| dc.contributor.author | 4. Ondiany, J. J. O., Karieko, O. R., Mude, L. H., & Monari, F. N | |
| dc.date.accessioned | 2024-10-18T06:54:18Z | |
| dc.date.available | 2024-10-18T06:54:18Z | |
| dc.date.issued | 2024-07 | |
| dc.identifier.uri | http://repository.kyu.ac.ke/123456789/1124 | |
| dc.description.abstract | Let n be a positive integer, y n − 1 cyclotomic polynomial and Zq be a given finite field. In this study we determined the number of cyclic codes over Z31. First, we partitioned the cyclotomic polynomial y n − 1 using cyclotomic cosets 31 mod n and factorized y n − 1 using case to case basis. Each monic divisor obtained is a generator polynomial and generate cyclic codes. The results obtained are useful in the field of coding theory and more especially, in error correcting codes. | en_US |
| dc.publisher | Journal of Advances in Mathematics and Computer Science | en_US |
| dc.subject | Code; cyclic codes; cyclotomic coset | en_US |
| dc.title | On the number of cyclic codes over Z31 | en_US |
| dc.type | Article | en_US |