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Abstract 
Malaria is one of the leading causes of mortality and morbidity in developing 
countries. Accurate and complete diagnosis is key for effective treatment of 
the disease. However, mainstream malaria diagnostic techniques suffer from 
a number of shortcomings. There is therefore an urgent need for develop-
ment of new and more efficient techniques for malaria diagnosis. In vivo 
Photoacoustic spectroscopy is an emerging technique, which has great poten-
tial of delivering a nearly ideal method for early diagnosis of the disease. The 
technique promises to be highly sensitive and specific. In this paper, a de-
scription of photoacoustic malaria sensing is given. This is followed by a re-
view of photoacoustic-based malaria diagnostic techniques and suggestions 
for future improvements. 
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1. Introduction 
1.1. Background of Malaria Disease 

Malaria is a common disease in tropical countries that poses serious public health 
concerns. It is one of the leading causes of mortality globally. Nearly 0.5 million 
deaths were attributed to the disease in the year 2015 according to the world 
malaria report [1]. The majority of these deaths comprise of children less than 
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five years old from sub-Saharan Africa. Besides, it is estimated that approx-
imately 200 million people are infected with the disease and 3.2 billion people 
are at risk of contracting the disease annually according to the report. This has 
created a heavy social-economic burden to the affected countries due to huge 
treatment costs and absenteeism from work and schools [2]. 

The disease is caused by protozoan parasites of the genus Plasmodium which 
lives in peripheral blood, spleen or liver of humans. The parasites are introduced 
to the human host through bites by infected mosquitoes—malaria vectors. Once 
in the bloodstream, the parasites move to the liver for incubation and multipli-
cation. They later move back to the bloodstream and attack the Red Blood Cells 
(RBCs). The parasites feed on the cells’ hemoglobin reducing or completely in-
hibiting the cells’ ability to bind oxygen. Hemoglobin is a complex bio-molecule 
made of two simpler molecules; the iron compound called heme and a protein 
molecule globin. The parasite digests globin to meet its nutritional needs but 
converts heme (which is toxic to the parasite [3]) into a by-product called he-
mozoin. Hemozoin, an inert insoluble crystal composed of iron nano-rods [4], is 
then deposited in parasites’ food vacuoles. Presence of hemozoin in RBCs in pe-
ripheral blood is, therefore, an indicator of malaria infection. Notably, hemozoin 
production is also associated with other blood-feeding parasites such as Schisto-
soma mansoni and Rhodnius prolixus [5] [6]. However, neither Schistosoma-
mansoni nor Rhodniusprolixus resides in peripheral blood. 

There are five species of Plasmodium parasites that infect humans [7], name-
ly; Plasmodium falciparum, Plasmodium ovale, Plasmodiumvivax, Plasmodium 
malariae, and Plasmodium knowlesi. Plasmodium falciparum is the most fatal 
while other species cause mild to moderate illnesses. Each of the five species has 
distinct morphological features which are used for Plasmodium parasites species 
identification during optical microscopy diagnosis. The parasites undergo three 
main inter-erythrocyte life stages, namely; the early stage is also known as ring 
stage, intermediate stage also called trophozoite stage and Mature stage also 
called schizont stage (the reproductive stage). Upon maturity of the parasites, 
the infected cells’ rapture and the merozoites (offspring of the parasites) are re-
leased into the bloodstream where they attack other health erythrocytes and the 
cycle starts afresh. However, some Plasmodium merozoites formed during asex-
ual reproduction of the schizonts differentiate to become the sexual form of the 
parasites (gametocytes) that are taken up by mosquitoes during blood meals and 
aid in the transmission of the disease [8]. Figure 1 [9] shows the life cycle of the 
Plasmodium parasite in the human host. 

1.2. Malaria Diagnostic Techniques   

Malaria diagnosis entails detection of the presence of the Plasmodium parasites 
in the patient blood and determination of the following parameters; species, life 
stages, and parasitemia estimation—an indicator of disease severity given by ei-
ther the number of Plasmodium parasites or the number of infected erythrocytes  
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Figure 1. Plasmodium life cycle in the human host. Sporozoites are re-
leased into the blood by the mosquito, they are delivered to the liver for 
incubation and multiplication. After multiplication, the merozoites are 
released into the blood to attach red blood cells. While in the red blood 
cells they feed on hemoglobin, undergo cell division and eventually make 
the cell rapture for the merozoite to be released and attach more cells. 
Some merozoites differentiate to be the sexual form and these are the 
ones that the mosquito takes during blood meal to perpetuate transmis-
sion. The diagram is adopted from ref [9]. 

 
per unit volume of blood. A number of malaria diagnostic techniques exist and 
more are under development. The gold standard method is optical microscopy 
[10] [11]. The technique involves examination of stained blood smear samples 
using a light microscope to aid visualization of Plasmodium parasites in eryt-
hrocytes. Labeling (staining) of blood smear samples with Giemsa is undertaken 
prior to examination of the slides. Staining helps to highlight the parasites’ pig-
ment (hemozoin) and hence makes the parasites conspicuous. This technique is 
time-consuming and labor-intensive due to the need for sample preparation and 
the enumeration of detected parasites in the microscope field of view. A single 
malaria test takes between 30 to 60 minutes. In addition, reliability of the results 
from this method depends on the experience of the microscope operator. 
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Other malaria diagnostic methods include; Polymerase Chain Reaction (PCR) 
based technique [12], Plasmodium parasite antigen detection based technique 
also referred as Rapid Diagnostic Test (RDT) [13] and Fluorescence microsco-
py-based techniques [11]. Antigen-based technique is widely used and boasts of 
a relatively fast detection speed of about fifteen minutes. However, the technique 
has low parasite detection sensitivity and specificity especially when the parasite 
load is low in the blood. The test is also relatively expensive with a single test 
costing about 1US$. In contrast, PCR technique has high detection sensitivity 
and specificity. It probes and amplifies genetic material of the Plasmodium para-
sites present in the blood. However, the technique demands the use of sophisti-
cated equipments and expensive reagents. Besides, a highly skilled operator is 
also required to perform the test. The technique is therefore used in research la-
boratories and confirmation of malaria tests. Fluorescent based technique relies 
on staining of blood smears with a fluorescent dye that would highlight the pa-
rasite nucleus. A fluorescent microscope is then used to observe the stained blood 
sample. The technique has also not yet found wide clinical adoption in malaria 
screening due to high cost of equipment, reagents and demand for highly skilled 
expertise.  

Some of the malaria diagnostic techniques reported by literature as being un-
der development include; Third Harmonic Generation (THG) technique [14], 
Magneto-optic based technique [15], and computer vision assisted optical mi-
croscopy technique [16] [17]. Label-free optical microscopy using multispectral 
imaging and chemometrics techniques has also been explored [18] [19]. Recent-
ly, a few publications have reported on the development of Photo-Thermal (PT) 
and Photo-Acoustic (PA) based techniques for in vivo malaria diagnosis [4] [20] 
[21] [22] [23]. Preliminary results regarding the techniques’ performance are 
impressive but more work is needed before the method can be clinically accepted 
for malaria screening.  

Generally, the mainstream malaria diagnostic techniques suffer from a num-
ber of shortcomings [10] [11] which include low detection sensitivity and speci-
ficity, labor and time intensiveness and demand for reagents and sophisticated 
equipments which are often expensive and inaccessible to people in resource 
scarce settings where often malaria is endemic. There is therefore an urgent need 
for development of new and more efficient techniques for malaria diagnosis. The 
remaining part of this paper explains in detail the principle behind photoacous-
tic-based malaria diagnostic technique and the reported progress. 

2. Photoacoustic Effect and Its Application in Biomedical  
Imaging and Diagnostics 

Photoacoustic effect is a process in which acoustic waves in the Ultrasound (US) 
frequency range are emitted upon absorption of optical radiation by chromo-
phores (light absorbing molecules). The phenomenon was first reported in 1880 
by Alexander Graham Bell [24]. Photoacoustic effect involves conversion of the 
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absorbed optical energy to thermal energy which leads to temperature rise and 
thermo-elastic expansion in the irradiated region. Consequently, a transient pres-
sure wave is generated and propagates through the sample. Reported biomedical 
applications of the technique include; anatomical and functional imaging of bi-
ological tissue [25]-[32], disease diagnostics [33]-[43] as well as guidance and 
monitoring of therapeutic interventions [44] [45].  

Efficient generation of PA signals demands two conditions to be satisfied; 
thermal and stress confinement [46]. This means that both heat conduction and 
thermo-elastic expansion are confined within the illuminated tissue region dur-
ing optical excitation time span. Generation of PA waves therefore requires use 
of either Time Domain (TD) techniques (where short optical pulses, typically in 
nanosecond range are used to excite the sample) [46] [47] [48] [49] or Frequen-
cy Domain (FD) techniques where intensity modulated Continuous Wave (CW) 
laser light is used to generate ultrasonic pressure waves in tissue [50] [51] [52] 
[53] [54]. In the case of FD techniques, either fixed frequency or linearly varying 
frequency (Chirped) optical signals are used to excite the sample. Use of pulsed 
optical beam produces stronger PA signals compared to fixed frequency intensi-
ty modulated optical excitation [55]. However, Chirped optical excitation com-
bined with lock-in detection have been reported to yield PA signals whose Signal 
to Noise Ratio (SNR) is comparable to that of pulsed excitation [50]. They also 
have other salient advantages such as; wide dynamic range which implies low 
energy optical sources can be used and this has a congruent advantage of mini-
mizing the risk of tissue damage due to excessive optical exposure, depth tenabili-
ty, and capability to use continuous wave diode lasers as opposed to bulky and 
expensive pulsed lasers. Both TD and chirped FD techniques can be used for 
tissue depth profilometry as they carry time of flight information. 

Intensity of the generated PA waves is a measure of the tissue’s optical absorp-
tion coefficient aµ —a parameter which infers the molecular composition and 
molar concentration of the constituent tissue chromophores (see Equation (1)) 
as well as the tissues mechanical and thermal properties [56]. To perform quan-
titative photoacoustic spectroscopy, the tissue should be excited by multispectral 
optical radiation (pulsed or intensity modulated) and the acoustic waves induced 
by each optical wavelength detected by either a focused ultrasonic transducer or 
transducer arrays placed in close proximity to the sample being probed. The 
signal is then amplified and processed to compensate for signal attenuation in 
the medium and the detector response. Spectroscopic inversion of the recovered 
initial photoacoustic pressure intensity 0

iPλ  (see Equation (2)) is then per-
formed to determine sample properties such as optical absorption coefficient spa-
tial distribution map, molecular composition, or concentration of chromophores 
in the sample. Some of the reported literature on these subjects can be found in 
references [57]-[63]. 

Photoacoustic imaging and sensing boasts of a number of advantages over 
other imaging modalities [56]; first is high spatial resolution and sharp image 
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contrast due to low scattering of the generated ultrasonic signal and high optical 
absorption sensitivity by bio-molecules. Second is the ability to perform mul-
ti-scale imaging hence yielding images of varying spatial resolution (from sub- 
micrometer to centimeter scale) and therefore enabling imaging of cell orga-
nelles, cells, tissues and organs of the same specimen using a single imaging mod-
ality. This has the potential to enable simultaneous studies of biological pheno-
mena at varying spatial and time scales with minimal intra-subject variability. 
Since non-ionizing optical radiation is used to excite the tissue, the technique is 
safe. It is also relatively cheap compared to other medical imaging modalities 
such as Nuclear Magnetic Resonance Imaging (NMRI) and X-Ray Computed 
Tomography (X-Ray CT). Recently, Photoacoustic Flow Cytometry (PAFC) has 
been proposed for detection of Circulating Tumor Cells (CTC) [64] [65] [66] 
[67]. The technique has also been explored for malaria diagnosis [21] [22] [23]. 

2.1. Malaria Diagnosis Using Photoacoustics 

The major chromophores in malaria infected blood are total hemoglobin (Hbt) 
and hemozoin [20]. Hbt is the sum of oxy-hemoglobin (HbO2) and deoxy-he- 
moglobin (Hb) molecules in the blood. Figure 2 is an excerpt of the spectral 
plots of hemozoin (Hz) and Hemoglobin (Hb) extracted from the work of saha 
et al. [16], and Cai et al. [18]. Table 1 gives values of the optical absorption coef-
ficients and molar concentrations of Hemozoin (Hz) in an infected erythrocyte 
 

 
Figure 2. (a) Molar extinction coefficients of oxyhemoglobin, deoxyhemoglobin, and 
hemozoin [20], the inset is a zoomed up view of the hemozoin spectrum showing its cha-
racteristic peaks. (b) 70% oxygenated blood and hemozoin [22]. 
 
Table 1. Optical absorption coefficients and molar concentration of hemozoin in both 
healthy and Plasmodium infected erythrocytes. Values of μa are extracted from [20]. 

 

Optical Absorption  
Coefficients μa (cm−1) Hemozoin Molar 

concentration (M) 
λ = 434 nm λ = 700 nm 

Healthy erythrocyte 6351.59 20.47 0 

Ring stage infected erythrocyte 6075.31 40.22 5.3 × 10−13 

Trophozoite infected erythrocyte 4239.99 171.41 6.2 × 10−12 

Schizont infected erythrocyte 2858.57 270.15 1.7 × 10−11 
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as extracted from the work of Saha et al. [20]. Based on the values of molar con-
centration of Hz present in the cell, it is possible to differentiate various stages of 
infection. Previous studies have demonstrated the possibility of in vivo imaging 
of oxygen saturation and malignant tumor hypoxia [50] [68]-[73], oxygen me-
tabolic rate [74], methemoglobin [75] and oxygen release rate in blood vessels 
and individual erythrocytes using sub-wavelength Optical Resolution Photoac-
oustic Microscope (OR-PAM) [76]. This suggests that a similar approach can be 
used to detect the presence of other dominant optical absorbers in individual 
erythrocytes such as hemozoin in case of malaria. 

The following is a brief analysis of the problem. Optical absorption coefficient 
due to a malaria infected erythrocyte can be described by the following equation. 

[ ] [ ]i i i
a Hz Hz tHb tHbc cλ λ λµ ε ε= +                       (1) 

i
i
λε  is the molar extinction coefficient of the ith chromophore present in the 

cell. Both aµ  and ε  are wavelength dependent hence the superscript iλ . [ ]ic  
is the molar concentration of the ith bio-molecule in the cell. The initial pho-
toacoustic signal generated due to absorption of an optical pulse of wavelength 

iλ  is the product of the deposited optical energy i i
e aA λ λµ= Φ  and a factor 

called gruneisen parameter (Γ). Φ is the local optical fluence distribution in the 
blood which depends on the intensity of the incident light as well as blood opti-
cal properties (mainly, optical absorption and scattering coefficients). In case the 
chromophore relaxation after photon absorption is not 100% non-radiative, a 
down scaling factor is included in the product to account for the fraction of 
photon energy converted to heat energy. Therefore, the initial PA pressure is 
given by the following equation [63]. 

0
i i i

th aP nλ λ λµ= Γ Φ                           (2) 

With the transformed thermal energy density due to non-radiative relaxation 
of chromophores given by 

i i
th aH n λ λµ= Φ                           (3) 

thn  is the fraction of optical energy converted to heat energy ( 1thn =  for 
non-fluorescent and non-photoluminescent chromophores). The grueneisen 
parameter is a thermodynamic quantity which gives the photoacoustic efficiency 
of the tissue, i.e., the fraction of the thermal energy converted to acoustic waves.  

The generated acoustic signal Po (also referred as initial PA pressure) propa-
gates through the tissue and is detected by an ultrasonic transducer placed at the 
tissue surface, a distance r from the target absorber (in this case a skin subsur-
face blood vessel). The detected acoustic signal, Pd differs from the initial PA 
signal due to; acoustic attenuation through the tissue, partial detection geometry 
of the traducer and the transducer’s detection efficiency ( )fη . The transducer 
output signal, Pd is therefore a product of the initial signal, Po and a scaling fac-
tor, Td which accounts for the described signal attenuation i.e., 

( ) ( )d d oP f T f P=                         (4) 
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with 

( ) ( )
2

e
2

o f l
d

NAT f f αη −=                       (5) 

where; NA is the traducers’ numerical aperture, l is its focal length and oα  is 
the tissue attenuation coefficient. Numerical values for the parameters in Equa-
tion (4) for some commercially available ultrasonic transducers can be found in 
reference [77]. 

2.2. Reported Work 

A limited number of studies have so far been carried out regarding in vivo pho-
toacoustic diagnosis of malaria. Generally, the principle of in vivo Photoacoustic 
Flow Cytometry (PAFC) [78] has been adopted. The technique entails use of a 
focused ultrasonic transducer to detect PA signals emitted due to optical excita-
tion of the flowing erythrocytes in blood vessels located below the skin surface. 
The signal peak intensity is monitored in time to keep track of the flowing eryt-
hrocytes (infected and non-infected). Healthy erythrocytes produce a nearly 
constant amplitude signal. Hemozoin – an endogenous malaria biomarker has 
either higher or lower optical absorption than hemoglobin depending on the 
optical wavelength used. This implies that the amplitude of Plasmodium infected 
blood would differ from that of healthy blood. The following is a brief review of 
the few reported literature. 

Cai et al. [22] proposed an in vivo (PAFC) technique for early diagnosis of 
malaria. They used a focused US transducer for detection of PA signal from 
flowing erythrocytes irradiated by three pulsed laser lights of wavelengths 532 
nm, 671 nm, and 820 nm. The signal was then amplified, digitized and loaded to 
a PC for processing. The system’s spatial resolution was reported to be be-
tween 1 - 6 µm. Both in vitro and in vivo experiments using mice as the animal 
model were conducted to determine the sensitivity of the device. The authors 
reported that their technique was 1000 times more sensitive than optical micro-
scopy method and could detect an infected erythrocyte 3 hours after inoculation 
of Plasmodium parasites into a healthy mouse compared to 3 days taken before 
detection using optical microscopy. They observed that when the optical energy 
used was increased beyond a certain threshold, hemozoin vapor nano-bubble 
formation occurred in the infected cells and this produced PA signal of in-
creased intensity—a process termed as nonlinear photoacoustics. They also used 
the process to perform real time destruction of infected cells (photo-thermal 
malaria therapy) while monitoring the efficiency of the therapy. They observed 
that the PA signal ratio of infected cells to non-infected cells was highest at 671 
nm optical excitation wavelength.  

Lukianova-Hleb et al. (2014) [21] described a picosecond pulsed laser tech-
nique for generation and detection of Hemozoin induced Vapor Nano-Bubbles 
(H-VNB). The authors argued that when hemozoin crystals in infected RBCs 
absorbs the ultra-short pulsed radiation (having picoseconds range pulse width) 
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of sufficient energy, nano-volume liquid around the hemozoin crystals is over-
heated and vaporized resulting in generation of transient vapor bubbles which 
undergo explosive expansion and collapsing—a process that is accompanied by 
emission of high intensity acoustic waves. Both in vitro and in vivo sets of he-
mozoin positive and hemozoin negative samples consisting of blood smears, 
whole blood and live mice were studied. Laser pulses were shone on samples and 
the emitted acoustic waves detected by an ultrasonic transducer. The transducer 
output was coupled to a digital oscilloscope. The detected signal was then ana-
lyzed in the time domain. It was found that samples containing hemozoin pro-
duced acoustic signals of higher amplitudes than hemozoin negative samples. It 
was reported that the technique yielded high correlation in differentiating Plas-
modium parasite life stages and parasitemia estimation in comparison with opt-
ical microscopy. The optical wavelength used for excitation of PA signals was 
672 nm—an absorption peak for hemozoin. The optical energies per pulse used 
for in vitro and in vivo experiments were 10 μJ and 15 μJ respectively. Lukiano-
va-Hleb et al. (2015) [23] used the technique for in vivo detection of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
parasites in humans and infected mosquitoes. Similar results were obtained. 

In general, photoacoustic based malaria diagnosis boasts of several advantages 
over other diagnostic methods which includes; use of endogenous contrast agent 
(hemozoin) for parasite detection as opposed to exogenous contrast agents as is 
the case in optical microscopy, potential for in vivo diagnosis. Use of non-ionizing 
radiation, which makes it safe, real time monitoring and capability for early de-
tection of the disease hence making treatment more effective. In addition, it is 
possible to use the technique for diagnosis of other blood related disease. How-
ever, the reported photoacoustic diagnostic systems suffer from a number of 
challenges which must be addressed before the technology can be clinically 
adopted. For example, the technique cannot perform quantitative measurement 
of chromophore molar concentration in absolute units. In most of the reported 
work [21] [22] [23], the distinction between healthy and diseased samples is 
made based on the relative amplitudes values of the induced PA signal between 
the two sets of samples. The limitation of this approach is wide signal amplitudes 
variability within subjects of the same class, which makes system calibration dif-
ficult. Secondly, the reported PA systems are bulky and expensive due to the 
demand for high-energy nanosecond pulsed multispectral laser sources, high fre-
quency sensitive ultrasonic transducers and lock-in amplifiers. Besides, the use 
of fluence estimation models for quantitative PA spectroscopy makes the mea-
surements time intensive and quasi real time. Their accuracy also depends on 
how well the tissue geometry is known a priori. 

There is a promising trend in addressing these challenges going by the num-
ber of publications and research groups working on the problem. Simplification 
of PA hardware has been attempted by substitution of the bulky and expensive 
Optical Parametric Oscillator (OPO) tuned laser sources with much smaller and 
cheap diode laser sources [79] [80] [81] and Light Emitting Diodes (LEDs) [82] 
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that have a wide range of optical wavelengths and are commercially available. 
Notably, QuantellaserTM has developed a compact high energy multispectral 
pulsed diode laser module operating in four different wavelengths (808, 915, 940 
or 980 nm) in the NIR region customized for PA applications. Its high optical 
pulse energy (of 1 mJ per emitted wavelength per 80 nS pulse width) is achieved 
by stacking multiple diode lasers of the same wavelength. Attempts to develop a 
compact hand held photoacoustic probe for in vivo imaging have also been re-
ported [83] [84] [85] [86].  

Use of chirped FD techniques in photoacoustic spectroscopy applications [50] 
[68] has the potential of simplifying the instrumentation complexity of the PA 
systems by enabling use of cheap and portable CW diode lasers as PA optical 
sources. Moreover, eliminate the need for computationally demanding numeri-
cal algorithms for fluence estimation. Development of a sensitive FD photoac-
oustic technique for hypoxia monitoring and early cancer detection has been 
reported [34] [35]. The technique is termed as Wavelength Modulated Differen-
tial Photoacoustic Technique (WM-DPAS). The technique uses two optical wa-
velengths (680 nm and 808 nm) to monitor variations in oxyhemoglobin con-
centration in tissue. One wavelength (680 nm in this case) should have maxi-
mum variation in extinction coefficients for oxyhemoglobin and deoxyhemoglo-
bin while the other wavelength (808 nm which is the isosbestic wavelength) 
should ideally have the extinction coefficients coinciding. Two CW laser sources 
are intensity modulated out of phase (differentially) and their output coupled to 
the sample for photoacoustic excitation. The emitted PA signal is detected by an 
ultrasonic transducer. Upon signal preprocessing, the Fourier transform of the 
signal is performed to obtain both amplitude and phase signals of the differential 
PA time domain signal. The phase signal is said to be independent of the optical 
fluence and its variation is only due to variations in the molar concentration of 
the probed chromophore. Judging from the reported features and performance 
of WM-DPAS, this technique is likely to be very suitable for in-vivo detection of 
malaria. 

3. Future Prospect 

In order to make photoacoustic based malaria diagnostic techniques clinically 
viable and a method of choice, the technique has to process the following quali-
ties; high diagnostic sensitivity and specificity, be fast, affordable, compact and 
portable. More work is needed in development of efficient PA techniques for 
detection of endogenous disease biomarkers such as hemozoin. Simplification of 
the instrumentation in PA systems will also be a significant contribution. As far 
as malaria diagnostics is concerned, it would be valuable to explore the possibil-
ity of using a PA based system to differentiate different species of Plasmodium in 
a malaria patient. This could be done by determining oxygen saturation levels in 
erythrocytes infected by different Plasmodium species. It would also be worth- 
while to investigate the potential of WM-PAS in non-invasive malaria detection. 

https://doi.org/10.4236/ojcd.2021.112005


D. M. Memeu et al. 
 

 

DOI: 10.4236/ojcd.2021.112005 69 Open Journal of Clinical Diagnostics 
 

4. Conclusion 

A review of reported literature on photoacoustic-based malaria diagnostic tech-
niques and a discussion of the existing research gap have been presented in this 
paper. Suggestions for future refinements have also been offered. 
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