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Information Technology 

Introduction 

  Efficient solutions to hard Artificial Intelligence (AI) 

tasks are invariably found in the realm of Deep Machine 

Learning (DML) by training deep neural networks (DNNs) 

using selected training algorithms. DML, [1], techniques 

possess the structural ability to learn hierarchical features 

from raw input data and subsequently use these features to 

make predictions over previously unseen data. The field of 

DML has recently enjoyed success on various machine 

learning tasks including speech processing, natural language 

processing and object recognition [8][14] Central to DML 

tasks are optimization algorithms that process the numerical 

computation of parameters for a system designed to make 

decisions based on unseen data. That is, based on currently 

available data, these parameters are chosen to be optimal with 

respect to a given learning problem.  

Typically, most real-world tasks are complex due to 

presence of noise in sparse data and hence require deep 

models with a large parameter manifold. [3]; [13] Ironically, 

[16], it is because ofadvances in computing capability for 

training these models that has made it much harder to learn 

hierarchical features than optimize models for successful 

machine learning tasks. In this regard, the training process 

requires significantly more training data and computing 

power in order to prevent over-fitting and increase model 

generalization capabilities. The success of certain 

optimization methods for machine learning has inspired 

research efforts towards more challenging machine learning 

problems and the design new methods that are more widely 

applicable.  

Optimization problems in machine learning arise through 

the definition of prediction and loss functions that appear in 

measures of expected and empirical risk that one aims to 

minimize [8]. There are two varieties of optimization 

problems in machine learning: the first involves convex 

optimization problems, derived from the use of logistic 

regression or support vector machines, while the second 

typically involves highly complex and problems with non-

convex error functions, derived from the use of deep neural 

networks. There are several optimization algorithms to 

automatic machine learning for non- convex objective 

functions with the most successful and widely used being 

those inspired by stochastic gradient descent (SGD).  

Deep Neural Networks are trained using the 

Backpropagation Algorithm [2] – especially its variant - the 

Back Propagation Through Time (BPTT) which is 

numerically formulated as a highly non-convex optimization 

problem in a very high dimensional feature space. The 

training process requires extreme skill and care. For instance, 

it is crucial to initialize the optimization process with a good 

starting point through parameter tuning and to monitor its 

progress while correcting conditioning issues [4]. A great 

deal of successes in deep machine learning lies not much in 

the neural network, but in the choice of the training 

algorithm, the domain of application, the quality and amount 

of training data as well as the tuning of hyper-parameters. 
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ABSTRACT  

In many modern computer applications such as Market Analysis, Critical Care, Speech 

Recognition, Physical Plant Monitoring, Sleep Stage Classification, Biological 

Population Tracking, data is captured over the course of time, constituting a Time-Series. 

Time-Series data often contain temporal information dependencies that cause two 

otherwise identical points of time to belong to different classes or predict different 

behavior. This inherent characteristic increases the difficulty of processing such data. 

Deep Machine Learning (DML) techniques possess the inherent ability for analyzing and 

making predictions about such data. By its nature, DML requires extensive provision of 

resources key amongst which is the model computation time. Several optimization 

algorithms have been invented in the recent past and compare differently in terms of their 

resource needs. The most popular class of optimization algorithms is based on the 

classical stochastic gradient descent (SGD) algorithm due to its ability to converge within 

reasonable time bounds. This paper is part of a larger project investigating optimization 

procedures for deep learning tasks based on the SGD. Specifically, we report on the 

comparative performance capabilities of the most popular SGD based algorithms for task 

of Time Series prediction namely. From our analysis of the six of these algorithms, we 

noted that ADAMAX is most appropriate for online learning while RMSPROP is the 

least affected by over-fitting for long training cycles.  
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Currently, most machine-learning tasks are mostly formulated 

as optimization procedures rather than the emphasis of the 

neural models and algorithms used; where the main objective 

is the quality of the training environment. 

1. Gradient Descent Optimzation Algorithms 

According to [4], in as much as they are the future of 

machine learning, deep neural architectures pose many 

notable challenges that continue to attract great interest 

amongst researchers in the AI community. Key among these 

include convergence to local minima, saturating activation 

functions, overfitting, long training times, exploding and 

vanishing gradients. Deep Neural Networks (DNNs) are 

highly nonlinear and difficult to optimize. During training, 

the parameter iterate may move from one local basin to 

another, or the data distribution may even change [1], posing 

serious challenges to researchers that can only be overcome 

by carefully selected deep learning algorithms.  Recent work 

in unsupervised feature learning and deep learning has shown 

that, the ability to effectively train large models can 

dramatically improve performance. Therefore, fast 

convergence and robustness against stochasticity are 

important characteristics desirable for a deep learning 

optimizer [4].  

At the root of gradient-based algorithms in neural 

networks is Stochastic Gradient Descent (SGD) optimization 

algorithm as reported in [2][4][16]; which updates a set of 

parameters, , using a learning rate, , computed on every 

training instance as the gradient of cost function J. Then, the 

parameters, , are updated in the direction of the gradients 

using the same value of the learning rate, . Beyond SGD, a 

number of methods have been introduced to adapt the 

separate learning rate for each parameter, called adaptive 

optimizers. The most prominent so-called first-order gradient 

descent based optimizers are ADAGRAD, RMSPROP, 

ADADELTA, ADAM, ADAMAX and NADAM. 

The researchers in “[19]” presented a family of 

subgradient methods that dynamically incorporate knowledge 

of the geometry of the data observed in earlier iterations to 

perform more informative gradient-based learning. 

ADAGRAD, as it is popularly known, is a gradient-based 

method in which the shared global learning rate  is divided 

by the l2-norm of all previous gradients, nt, introducing 

different learning rates for every parameter at each time step, 

so that larger gradients have smaller learning rates and vice 

versa. Further, the authors in “[20]” introduced Adaptive 

Moment (ADAM), an algorithm for first-order optimization 

based on adaptive estimates of lower-order moments with 

intuitive hyper-parameter interpretations that require little 

tuning.  

ADAMAX, [17], is a variant of ADAM based on the 

infinity norm, with inherent  capability of adjusting the 

learning rate based on data characteristics and hence suited to 

learn time-variant processes such as speech data with 

dynamically changing noise conditions. RMSPROP was later 

introduced that restricts a window over the recent gradients to 

acquire local information instead of storing all the past 

squared gradients from the beginning of the training by using 

a decaying weight of squared gradients is applied.  

ADADELTA, which is similar to RMSPROP, takes the 

decaying mean of the past squared gradients, nt, accumulates 

this quantity, and its square root, rt of past squared gradients 

up to the time t [11]. The obtained parameter update is stored 

in Δt. Then the squared parameter updates, st, is 

accumulated in a decaying manner to compute the final 

update. NADAM is a hybrid of two algorithms: ADAM and 

Nesterov Accelerated Gradient (NAG), through modification 

of ADAM’s momentum component to take advantage of 

insights from NAG. 

2. Deep Learning Networks 

One of the earliest successes of Deep Neural Networks 

(DNNs) was reported with the introduction of greedy layer-

wise unsupervised learning for Deep Belief Networks 

(DBNs), capable of handling the vanishing gradients problem 

appear [10]. 

A neural network that is too big and with layers that are 

fully connected can become infeasible to train. Trained 

mostly with the Backpropagation algorithm, Convolution 

Neural Networks (CNN) [15] are common for image 

processing tasks and reduce the number of parameters to be 

learned by limiting the number of connections of the neurons 

in the hidden layer to only some of the input neurons. A 

hidden layer (in this case, also called a convolutional layer is 

composed by several groups of neurons with the weights of 

all neurons in a group are shared. When the network has 

loops, it is called a Recurrent Neural Network (RNN). It is 

possible to adapt the Backpropagation algorithm to train a 

recurrent network, by “unfolding" the network through time 

and constraining some of the connections to always hold the 

same weights.  

 One problem that arises from the unfolding of an RNN 

is that the gradient of some of the weights starts to become 

too small or too large if the network is unfolded for too many 

time steps. This is called the vanishing gradients problem. A 

type of network architecture that solves this problem is the 

Long Short Term Memory (LSTM). In a typical 

implementation, the hidden layer is replaced by a complex 

block of computing units composed by gates that trap the 

error in the block, forming a so-called “error carrousel" [16]. 

There exists alternative neural architectures such as 

Restricted Boltzmann Machines (RBM), Hopfield Networks 

and Auto-Encoders. Other variations of deep architectures use 

several modules that trained separately and stacked together 

so that the output of the first one is the input of the next one 

[13]. 

3. Related Literature 

This section reviews some of the reported approaches to 

Time-Series task analysis and modeling using Deep Learning 

architectures as well as comparative analysis of optimization 

procedures and algorithms for and not limited to Time-Series 

data modeling. Time-Series is defined as a vector X = 

x
(1),

x
(2)

… x
(n)

, where each element x
(t)

 R
m  

pertaining to X is 

an array of m values such that x1
(t)  

x1
(t) ,…,

xm
(t)

. Each one of 

the m values correspond to the input variables measured in 

the time-series. Most work using ANN to manipulate Time-

Series data focuses on modeling and forecasting [5][6].  

The temporal nature of Time-Series data facilitates 

studies in different fields of applications: while doctors can 

be interested in searching for anomalies in the sleep patterns 

of a patient, economists may be more interested in forecasting 

the next prices some stocks of interest will assume. These 

kinds of problems are addressed in the reported literature by a 

range of different approaches such as Classification, 

Segmentation, Anomaly Detection and Prediction [7]. As an 

early attempt on using Artificial Neural Networks (ANNs) for 

Time-Series analysis, [9][12] modelled stock prices over a 

range of 8 years.  

Other related research include the one by [10], for big 

data weather forecasting, the use of deep convolutional neural 
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networks by [18] for Time-Series classification using multi-

channels, Time-series forecasting of indoor temperature using 

pre-trained deep neural networks in [12], forecasted tourism 

demand using time series, artificial neural networks and 

multivariate adaptive regression splines, [7], performed Time 

series forecasting using a deep belief network with restricted 

boltzmann machines. The research in [6], applied time series 

and artificial neural network models in short-term forecasting 

of power generation while [9], carried out multi-scale internet 

traffic forecasting using neural networks and time series 

methods. 

4. Experiment  

This section details the statement of the problem to be 

solved, the dataset used, the machine-learning platform 

applied, the neural network model selected for training as 

well as the various optimization algorithms tested on varying 

parameters of number of epochs and the batch size. 

4.1 Problem Statement 

The problem selected for this study is regression of time 

series data representing the number of airline passengers 

arriving at an international airport. The prediction problem 

was formulated as: given a month, the task is to predict the 

number of international airline passengers in units of 1,000. It 

was then phrased as a regression problem with a window of 

three (3) recent time steps that were used to make the 

prediction for the next time step given the current time step. 

In this case, the input variables are t-2, t-1, t and the output 

variable is t+1. 

4.2 Dataset and Machine Learning Platform 

The international airline passengers dataset is publicly 

available from major international machine learning libraries. 

For specificity, the dataset was retrieved from the Berkey UC 

Machine Learning library. This was prepared using the 

Python based Keras Machine Learning Library operating 

under the Tensor Flow backend. 

4.3 Use of the MLP 

The experiments were conducted using a fully connected 

Multi-Layer Percentron (MLP) of three (3) input layers 

optimized using dropout at each layer’s input to improve the 

generalization capability and its potential non-linearity 

addressed by the rectified linear activation unit (ReLU). The 

latter has the effect of preventing saturation of the gradient 

when the network becomes very deep. 

4.4    Training Algorithms  

As indicated in the introductory section, six (6) popular 

stochastic gradient descent based optimization algorithms 

were selected namely ADAM, ADAMAX, ADAGRAD, 

NADAM, ADADELTA and RMSPROP. The experiment was 

conducted using the pure stochastic version by setting the 

batch size to 1 and then varying the number of iterations 

through the dataset by setting the epochs number to 30 and 

50. The same was repeated using a simple batch of 2 and the 

same number of iterations. The method used for purposes of 

stratified cross validation was to split the ordered dataset into 

train and test sets at the ratio of 7:3 respectively. This is 

necessary in order get an idea of the skill of the model on new 

unseen data.  

        Once the model is fitted, the subsequent activity was to 

estimate its performance on the train and test datasets. The 

role of this is to provide a point of reference when comparing 

new models. The technique applied was the Mean Squared 

Error (MSE) and the Root Mean Squared Error (RMSE) in 

order to calculate the accuracy of the algorithms on the 

datasets. Finally, predictions were generated using the model 

for both the train and test datasets and plotted on a common 

graph.  

5. Results & Analysis 

Table 1 below elaborates the model structure upon being 

fit into the dataset while Table 2 summarizes the results 

obtained for various parameter settings. The comparison 

graphs for both training and testing are combined in Figure 1 

below 
Table 1. Model Structure. 

Layer (type) Output Shape               Param #    

dense_97 (Dense)              (None, 12)                48 

dense_98 (Dense)              (None, 8)                  104 

dense_99 (Dense)              (None, 1)                  9 
Total params: 161 

Trainableparams:161 

Non-trainable params: 0 

 

The algorithms exhibit a slight difference in comparative 

accuracies in the pure stochastic case where the batch size is 

set at 1 and 30 iterations with ADAMAX leading at 97.76% 

and 95.78% on the training and the testing set respectively. 

ADAGRAD trails the group at 96.98% and 93.37%. All 

algorithms record increased accuracy when the number of 

iterations is increased from 30 to 50 except ADAMAX that 

records a decrease on both the training and the test sets. 

ADAMAX maintains the lead for a batch size of 2 and 30 

iterations at 97.81% and 95.78% on both the training and 

testing set while Adagrard trails at 96.93% and 93.22%. 

However, when the number of iterations increases to 50, 

NADAM overtakes ADAMAX closely followed by 

RMSPROP at 97.81% and 97.72% on the training set 

respectively but RMSPROP leads the pack for the testing set 

at 95.68%.  
Table 2: Accuracy on predictions 

 

TRAINING 

ALG. 

 

NO. 

OF 

EPOC. 

BATCH  SIZE 

D
A

T
A

S
E

T
 

TRAIN SET  TEST SET 

1 2 1 2  

ADAM 30 97.68 97.55 95.31 95.07 

%
 A

C
C

U
R

A
C

Y
 

50 97.63 97.70 95.07 95.35 

ADAGRAD 30 97.78 97.77 95.75 95.71 

50 97.28 97.25 94.43 94.32 

ADADELTA 30 97.72 97.72 95.31 95.07 

50 96.95 96.89 95.15 95.35 

RMSPROP 30 97.55 97.55 95.40 95.36 

50 97.22 97.20 94.64 94.60 

ADAMAX 30 97.24 96.93 93.77 93.23 

50 97.28 97.07 94.39 93.89 

NADAM 30 97.78 97.75 95.42 95.43 

50 97.75 97.72 95.36 95.26 

 

 
Figure 1. Comparison Graphs.
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6. Conclusion 

A number of conclusions were drawn from the results 

obtained this experiment for the current type of problem, the 

given dataset, the MLP neural network and selected 

parameter values: 

1. ADAMAX is the most appropriate algorithm for the purely 

stochastic / online case where the parameter update is done 

for every training instance as observed from the accuracies 

when the batch size is 1. 

2. On the contrary to ADAMAX, RMSPROP and NADAM 

are better suited when the number of parameter updates 

reduces per number of training instances as observed from 

their respective improved accuracies when the batch size 

increased to 2. 

3. RMSPROP is the least affected by over-fitting when 

trained for longer periods as it out-performs the list on the test 

set. 
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