
Zachary Kirori / Elixir Inform. Tech. 132 (2019) 53333-53336 53333

Performance Analysis of Stochastic Gradient Descent - Based Algorithms

for Time Series Sequence Modeling
Zachary Kirori

Department of Computing & Information Technology, Kirinyaga University, Nairobi, Kenya.

Information Technology

Introduction

 Efficient solutions to hard Artificial Intelligence (AI)

tasks are invariably found in the realm of Deep Machine

Learning (DML) by training deep neural networks (DNNs)

using selected training algorithms. DML, [1], techniques

possess the structural ability to learn hierarchical features

from raw input data and subsequently use these features to

make predictions over previously unseen data. The field of

DML has recently enjoyed success on various machine

learning tasks including speech processing, natural language

processing and object recognition [8][14] Central to DML

tasks are optimization algorithms that process the numerical

computation of parameters for a system designed to make

decisions based on unseen data. That is, based on currently

available data, these parameters are chosen to be optimal with

respect to a given learning problem.

Typically, most real-world tasks are complex due to

presence of noise in sparse data and hence require deep

models with a large parameter manifold. [3]; [13] Ironically,

[16], it is because ofadvances in computing capability for

training these models that has made it much harder to learn

hierarchical features than optimize models for successful

machine learning tasks. In this regard, the training process

requires significantly more training data and computing

power in order to prevent over-fitting and increase model

generalization capabilities. The success of certain

optimization methods for machine learning has inspired

research efforts towards more challenging machine learning

problems and the design new methods that are more widely

applicable.

Optimization problems in machine learning arise through

the definition of prediction and loss functions that appear in

measures of expected and empirical risk that one aims to

minimize [8]. There are two varieties of optimization

problems in machine learning: the first involves convex

optimization problems, derived from the use of logistic

regression or support vector machines, while the second

typically involves highly complex and problems with non-

convex error functions, derived from the use of deep neural

networks. There are several optimization algorithms to

automatic machine learning for non- convex objective

functions with the most successful and widely used being

those inspired by stochastic gradient descent (SGD).

Deep Neural Networks are trained using the

Backpropagation Algorithm [2] – especially its variant - the

Back Propagation Through Time (BPTT) which is

numerically formulated as a highly non-convex optimization

problem in a very high dimensional feature space. The

training process requires extreme skill and care. For instance,

it is crucial to initialize the optimization process with a good

starting point through parameter tuning and to monitor its

progress while correcting conditioning issues [4]. A great

deal of successes in deep machine learning lies not much in

the neural network, but in the choice of the training

algorithm, the domain of application, the quality and amount

of training data as well as the tuning of hyper-parameters.

Tele: +254 721 744 275
E-mail address: zkirori@kyu.ac.ke

 © 2019 Elixir All rights reserved

ARTICLE INFO

Article history:

Received: 25 May 2019;

Received in revised form:

29 February 2016;

Accepted: 2 March 2016;

Keywords

Time Series,

Predictive Modeling,

Performance Analysis,

Stochastic Gradient Descent,

Deep Learning Optimization.

ABSTRACT

In many modern computer applications such as Market Analysis, Critical Care, Speech

Recognition, Physical Plant Monitoring, Sleep Stage Classification, Biological

Population Tracking, data is captured over the course of time, constituting a Time-Series.

Time-Series data often contain temporal information dependencies that cause two

otherwise identical points of time to belong to different classes or predict different

behavior. This inherent characteristic increases the difficulty of processing such data.

Deep Machine Learning (DML) techniques possess the inherent ability for analyzing and

making predictions about such data. By its nature, DML requires extensive provision of

resources key amongst which is the model computation time. Several optimization

algorithms have been invented in the recent past and compare differently in terms of their

resource needs. The most popular class of optimization algorithms is based on the

classical stochastic gradient descent (SGD) algorithm due to its ability to converge within

reasonable time bounds. This paper is part of a larger project investigating optimization

procedures for deep learning tasks based on the SGD. Specifically, we report on the

comparative performance capabilities of the most popular SGD based algorithms for task

of Time Series prediction namely. From our analysis of the six of these algorithms, we

noted that ADAMAX is most appropriate for online learning while RMSPROP is the

least affected by over-fitting for long training cycles.

 © 2019 Elixir All rights reserved.

Elixir Inform. Tech. 132 (2019) 53333-53336

Available online at www.elixirpublishers.com (Elixir International Journal)

mailto:zkirori@kyu.ac.ke
mailto:zkirori@kyu.ac.ke

Zachary Kirori / Elixir Inform. Tech. 132 (2019) 53333-53336 53334

Currently, most machine-learning tasks are mostly formulated

as optimization procedures rather than the emphasis of the

neural models and algorithms used; where the main objective

is the quality of the training environment.

1. Gradient Descent Optimzation Algorithms

According to [4], in as much as they are the future of

machine learning, deep neural architectures pose many

notable challenges that continue to attract great interest

amongst researchers in the AI community. Key among these

include convergence to local minima, saturating activation

functions, overfitting, long training times, exploding and

vanishing gradients. Deep Neural Networks (DNNs) are

highly nonlinear and difficult to optimize. During training,

the parameter iterate may move from one local basin to

another, or the data distribution may even change [1], posing

serious challenges to researchers that can only be overcome

by carefully selected deep learning algorithms. Recent work

in unsupervised feature learning and deep learning has shown

that, the ability to effectively train large models can

dramatically improve performance. Therefore, fast

convergence and robustness against stochasticity are

important characteristics desirable for a deep learning

optimizer [4].

At the root of gradient-based algorithms in neural

networks is Stochastic Gradient Descent (SGD) optimization

algorithm as reported in [2][4][16]; which updates a set of

parameters, , using a learning rate, , computed on every

training instance as the gradient of cost function J. Then, the

parameters, , are updated in the direction of the gradients

using the same value of the learning rate, . Beyond SGD, a

number of methods have been introduced to adapt the

separate learning rate for each parameter, called adaptive

optimizers. The most prominent so-called first-order gradient

descent based optimizers are ADAGRAD, RMSPROP,

ADADELTA, ADAM, ADAMAX and NADAM.

The researchers in “[19]” presented a family of

subgradient methods that dynamically incorporate knowledge

of the geometry of the data observed in earlier iterations to

perform more informative gradient-based learning.

ADAGRAD, as it is popularly known, is a gradient-based

method in which the shared global learning rate  is divided

by the l2-norm of all previous gradients, nt, introducing

different learning rates for every parameter at each time step,

so that larger gradients have smaller learning rates and vice

versa. Further, the authors in “[20]” introduced Adaptive

Moment (ADAM), an algorithm for first-order optimization

based on adaptive estimates of lower-order moments with

intuitive hyper-parameter interpretations that require little

tuning.

ADAMAX, [17], is a variant of ADAM based on the

infinity norm, with inherent capability of adjusting the

learning rate based on data characteristics and hence suited to

learn time-variant processes such as speech data with

dynamically changing noise conditions. RMSPROP was later

introduced that restricts a window over the recent gradients to

acquire local information instead of storing all the past

squared gradients from the beginning of the training by using

a decaying weight of squared gradients is applied.

ADADELTA, which is similar to RMSPROP, takes the

decaying mean of the past squared gradients, nt, accumulates

this quantity, and its square root, rt of past squared gradients

up to the time t [11]. The obtained parameter update is stored

in Δt. Then the squared parameter updates, st, is

accumulated in a decaying manner to compute the final

update. NADAM is a hybrid of two algorithms: ADAM and

Nesterov Accelerated Gradient (NAG), through modification

of ADAM’s momentum component to take advantage of

insights from NAG.

2. Deep Learning Networks

One of the earliest successes of Deep Neural Networks

(DNNs) was reported with the introduction of greedy layer-

wise unsupervised learning for Deep Belief Networks

(DBNs), capable of handling the vanishing gradients problem

appear [10].

A neural network that is too big and with layers that are

fully connected can become infeasible to train. Trained

mostly with the Backpropagation algorithm, Convolution

Neural Networks (CNN) [15] are common for image

processing tasks and reduce the number of parameters to be

learned by limiting the number of connections of the neurons

in the hidden layer to only some of the input neurons. A

hidden layer (in this case, also called a convolutional layer is

composed by several groups of neurons with the weights of

all neurons in a group are shared. When the network has

loops, it is called a Recurrent Neural Network (RNN). It is

possible to adapt the Backpropagation algorithm to train a

recurrent network, by “unfolding" the network through time

and constraining some of the connections to always hold the

same weights.

 One problem that arises from the unfolding of an RNN

is that the gradient of some of the weights starts to become

too small or too large if the network is unfolded for too many

time steps. This is called the vanishing gradients problem. A

type of network architecture that solves this problem is the

Long Short Term Memory (LSTM). In a typical

implementation, the hidden layer is replaced by a complex

block of computing units composed by gates that trap the

error in the block, forming a so-called “error carrousel" [16].

There exists alternative neural architectures such as

Restricted Boltzmann Machines (RBM), Hopfield Networks

and Auto-Encoders. Other variations of deep architectures use

several modules that trained separately and stacked together

so that the output of the first one is the input of the next one

[13].

3. Related Literature

This section reviews some of the reported approaches to

Time-Series task analysis and modeling using Deep Learning

architectures as well as comparative analysis of optimization

procedures and algorithms for and not limited to Time-Series

data modeling. Time-Series is defined as a vector X =

x
(1),

x
(2)

… x
(n)

, where each element x
(t)

 R
m

pertaining to X is

an array of m values such that x1
(t)

x1
(t) ,…,

xm
(t)

. Each one of

the m values correspond to the input variables measured in

the time-series. Most work using ANN to manipulate Time-

Series data focuses on modeling and forecasting [5][6].

The temporal nature of Time-Series data facilitates

studies in different fields of applications: while doctors can

be interested in searching for anomalies in the sleep patterns

of a patient, economists may be more interested in forecasting

the next prices some stocks of interest will assume. These

kinds of problems are addressed in the reported literature by a

range of different approaches such as Classification,

Segmentation, Anomaly Detection and Prediction [7]. As an

early attempt on using Artificial Neural Networks (ANNs) for

Time-Series analysis, [9][12] modelled stock prices over a

range of 8 years.

Other related research include the one by [10], for big

data weather forecasting, the use of deep convolutional neural

Zachary Kirori / Elixir Inform. Tech. 132 (2019) 53333-53336 53335

networks by [18] for Time-Series classification using multi-

channels, Time-series forecasting of indoor temperature using

pre-trained deep neural networks in [12], forecasted tourism

demand using time series, artificial neural networks and

multivariate adaptive regression splines, [7], performed Time

series forecasting using a deep belief network with restricted

boltzmann machines. The research in [6], applied time series

and artificial neural network models in short-term forecasting

of power generation while [9], carried out multi-scale internet

traffic forecasting using neural networks and time series

methods.

4. Experiment

This section details the statement of the problem to be

solved, the dataset used, the machine-learning platform

applied, the neural network model selected for training as

well as the various optimization algorithms tested on varying

parameters of number of epochs and the batch size.

4.1 Problem Statement

The problem selected for this study is regression of time

series data representing the number of airline passengers

arriving at an international airport. The prediction problem

was formulated as: given a month, the task is to predict the

number of international airline passengers in units of 1,000. It

was then phrased as a regression problem with a window of

three (3) recent time steps that were used to make the

prediction for the next time step given the current time step.

In this case, the input variables are t-2, t-1, t and the output

variable is t+1.

4.2 Dataset and Machine Learning Platform

The international airline passengers dataset is publicly

available from major international machine learning libraries.

For specificity, the dataset was retrieved from the Berkey UC

Machine Learning library. This was prepared using the

Python based Keras Machine Learning Library operating

under the Tensor Flow backend.

4.3 Use of the MLP

The experiments were conducted using a fully connected

Multi-Layer Percentron (MLP) of three (3) input layers

optimized using dropout at each layer’s input to improve the

generalization capability and its potential non-linearity

addressed by the rectified linear activation unit (ReLU). The

latter has the effect of preventing saturation of the gradient

when the network becomes very deep.

4.4 Training Algorithms

As indicated in the introductory section, six (6) popular

stochastic gradient descent based optimization algorithms

were selected namely ADAM, ADAMAX, ADAGRAD,

NADAM, ADADELTA and RMSPROP. The experiment was

conducted using the pure stochastic version by setting the

batch size to 1 and then varying the number of iterations

through the dataset by setting the epochs number to 30 and

50. The same was repeated using a simple batch of 2 and the

same number of iterations. The method used for purposes of

stratified cross validation was to split the ordered dataset into

train and test sets at the ratio of 7:3 respectively. This is

necessary in order get an idea of the skill of the model on new

unseen data.

 Once the model is fitted, the subsequent activity was to

estimate its performance on the train and test datasets. The

role of this is to provide a point of reference when comparing

new models. The technique applied was the Mean Squared

Error (MSE) and the Root Mean Squared Error (RMSE) in

order to calculate the accuracy of the algorithms on the

datasets. Finally, predictions were generated using the model

for both the train and test datasets and plotted on a common

graph.

5. Results & Analysis

Table 1 below elaborates the model structure upon being

fit into the dataset while Table 2 summarizes the results

obtained for various parameter settings. The comparison

graphs for both training and testing are combined in Figure 1

below
Table 1. Model Structure.

Layer (type) Output Shape Param #

dense_97 (Dense) (None, 12) 48

dense_98 (Dense) (None, 8) 104

dense_99 (Dense) (None, 1) 9
Total params: 161

Trainableparams:161

Non-trainable params: 0

The algorithms exhibit a slight difference in comparative

accuracies in the pure stochastic case where the batch size is

set at 1 and 30 iterations with ADAMAX leading at 97.76%

and 95.78% on the training and the testing set respectively.

ADAGRAD trails the group at 96.98% and 93.37%. All

algorithms record increased accuracy when the number of

iterations is increased from 30 to 50 except ADAMAX that

records a decrease on both the training and the test sets.

ADAMAX maintains the lead for a batch size of 2 and 30

iterations at 97.81% and 95.78% on both the training and

testing set while Adagrard trails at 96.93% and 93.22%.

However, when the number of iterations increases to 50,

NADAM overtakes ADAMAX closely followed by

RMSPROP at 97.81% and 97.72% on the training set

respectively but RMSPROP leads the pack for the testing set

at 95.68%.
Table 2: Accuracy on predictions

TRAINING

ALG.

NO.

OF

EPOC.

BATCH SIZE

D
A

T
A

S
E

T

TRAIN SET TEST SET

1 2 1 2

ADAM 30 97.68 97.55 95.31 95.07

%
 A

C
C

U
R

A
C

Y

50 97.63 97.70 95.07 95.35

ADAGRAD 30 97.78 97.77 95.75 95.71

50 97.28 97.25 94.43 94.32

ADADELTA 30 97.72 97.72 95.31 95.07

50 96.95 96.89 95.15 95.35

RMSPROP 30 97.55 97.55 95.40 95.36

50 97.22 97.20 94.64 94.60

ADAMAX 30 97.24 96.93 93.77 93.23

50 97.28 97.07 94.39 93.89

NADAM 30 97.78 97.75 95.42 95.43

50 97.75 97.72 95.36 95.26

Figure 1. Comparison Graphs.

Zachary Kirori / Elixir Inform. Tech. 132 (2019) 53333-53336 53336

6. Conclusion

A number of conclusions were drawn from the results

obtained this experiment for the current type of problem, the

given dataset, the MLP neural network and selected

parameter values:

1. ADAMAX is the most appropriate algorithm for the purely

stochastic / online case where the parameter update is done

for every training instance as observed from the accuracies

when the batch size is 1.

2. On the contrary to ADAMAX, RMSPROP and NADAM

are better suited when the number of parameter updates

reduces per number of training instances as observed from

their respective improved accuracies when the batch size

increased to 2.

3. RMSPROP is the least affected by over-fitting when

trained for longer periods as it out-performs the list on the test

set.

References

[1] Bahar, P., Alkhouli, T., Thorsten, P., Brix, C., Ney, H.

(2017). Empirical Investigation of Optimization Algorithms

in Neural Machine Translation. The Prague Bulletin of

Mathematical Linguistics. No. 108 pp 13–25

[2] Bengio Y., (2012). Practical Recommendations for

Gradient-Based Training of Deep Architectures,

arXiv:1206.5533v2

[3] Bottou L., (2010). Large-scale machine learning with

stochastic gradient descent. In Proceedings of COMPSTAT’

2010, pp. 177–186.

[4] Bottou L., Curtis F. E., and Nocedal J., (2017).

Optimization Methods for Large-Scale Machine Learning,

arXiv:1606.04838v2 [stat.ML]

[5] Cortez, P., Rio, M., Rocha, M., Sousa, P. (2012). Multi-

scale internet traffic forecasting using neural networks and

time series methods. Expert Systems 29(2), 143-155

[6] John Gamboa. Deep Learning for Time-Series Analysis.

arXiv:1701.01887v1 [cs.LG] 7 Jan 2017

[7] Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M.

(2014). Time series forecasting using a deep belief network

with restricted boltzmann machines. Neurocomputing 137,

47-56

[8] LeCun Y., Bengio Y., and Hinton G., (2015). Deep

learning: Nature, International journal of science,

521(7553):436–444

[9] Lin, C.J., Chen, H.F., Lee, T.S. (2011) Forecasting

tourism demand using time series, artificial neural networks

and multivariate adaptive regression splines: evidence from

taiwan. International Journal of Business Administration Vol.

2(2), p14

[10] Liu, J.N., Hu, Y., He, Y., Chan, P.W., Lai, L. (2015).

Deep neural network modeling for big data weather

forecasting. In: Information Granularity, Big Data, and

Computational Intelligence, pp. 389 - 408. Springer

[11] Matthew D. Zeiler. (2012). Adadelta: An Adaptive

Learning Rate Method arXiv:1212.5701v1 [cs.LG]

[12] Romeu, P., Zamora-Martinez, F., Botella-Rocamora, P.,

Pardo, J. (2013). Time-series forecasting of indoor

temperature using pre-trained deep neural networks. In:

Artificial Neural Networks and Machine Learning. ICANN

2013, pp. 451- 458. Springer

[13] Schaul T. and Antonoglou L., (2017). Unit Tests for

Stochastic Optimization. Deep Mind Technologies,

arXiv:1312.60553

[14] Schmidhuber J., (2015). Deep learning in neural

networks: An overview, Neural Networks, vol 61 pp. 85–117

[15] Simonyan K. and Zisserman A., (2014). Deep

convolutional networks for large-scale image recognition.

arXiv preprint arXiv:1409.1556

[16] Vankadara L. C., (2015). Optimizing Deep Neural

Networks.Retrievedfrom:https://dokumen.tips/documents/opti

mizing-deep-neural-networks.html

[17] Xiangyu Z., Zhiyong Z. and Wang D., (2016). Adamax

Online Training for Speech Recognition. CSLT Technical

Report-20150032

[18] Zheng, Y., Liu, Q., Chen, E., Ge, Y., Zhao, J.L. (2014).

Time series classification using multi-channels deep

convolutional neural networks. In: Web-Age Information

Management, pp. 298 - 310. Springer

[19] Yoram Singer, Elad Hazan, John Duchi, (2011).

Adaptive Subgradient Methods for Online Learning and

Stochastic Optimization. Journal of Machine Learning

Research 12 (2011) 2121-2159

