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ABSTRACT

Fuzzy Regression Analysis (FRA), also known as non-statistical regression analysis, is an ap-
proach used to establish an ambiguous connection between input and output variables. FRA
serves as an alternative method to classical Regression Analysis CRA. The models that are
used to model cross sectional data are statistical regression models which are based on linearity,
normality and homoscedasticity assumptions. However, these assumptions may not hold true.
Thus, fuzzy regression analysis gives a solution to challenges that may arise when using sta-
tistical regression models. The main objective of the study was modeling cross sectional data
of the sale price of the residential properties in Ames using fuzzy regression analysis and the
specific objectives were performing diagnostic tests on fuzzy regression assumptions, fitting the
model of fuzzy linear regression and evaluating the fuzzy model of linear regression. Secondary
data accessed from Ames assessors office was used. Data visualization indicated price fluctua-
tions of the residential properties which was uncertain. Diagnostic tests of normality, linearity,
multicollinearity and homoscedasticity were performed to ascertain the application of fuzzy
regression analysis. After verifying the assumptions, fuzzy regression analysis was applicable
to model this application. Three fuzzy regression methods: possibilistic linear regression meth-
ods with least squares, possibilistic linear regression and fuzzy least absolute residuals were
employed to fit the fuzzy linear regression model (FLRM). Fitting FLRM involved conversion
of real value observations of the response variable into fuzzy numbers. The fitted models using
fuzzy regression methods were assessed based on total fit error and goodness of fit measure.
According to the study’s findings, method based on fuzzy least squares gave a better compati-
bility of the fuzzy linear regression model than possibilistic methods. Also, methods based on
possibilistic regression indicated the range in which the price of the residential properties can
vary to the smallest and largest value using predictor variables present. Therefore, to model
cross sectional data of the price of residential properties which may change at a given time,
models based on fuzzy least squares methods were preferred compared to possibilistic linear
regression methods. The study recommended that diagnostic tests to be performed on any given
data set to determine the model to be used when fitting the data, fuzzy linear regression models
to be used to fit a given data that assumes classical regression assumptions and fuzzy least
squares methods be used in modeling cross sectional data of the sale price of the residential
properties for optimal results when making decisions on the range at which the sale price may
range.
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CHAPTER ONE

INTRODUCTION

1.1 Background of the study

Regression analysis is a statistical technique that gives a correlation between a response variable

and an explanatory variable (Montgomery et al., 2021). Its main focus is to determine the effect

of an explanatory variable and prediction of an effect. The basic types of regression analysis

pointed out by Gogtay et al. (2017) include simple and multiple linear regression analyses

which are chosen depending on the type of variables one is dealing with. Statistical regression

assumptions which include linearity, normality, homoscedasticity and non multicollinearity

have to be justified for one to perform the analysis. In addition, the data in use should be precise

and sufficient enough to support statistical regression analysis. If the assumptions do not hold

true as Arkes (2019) claims, it will be difficult for a researcher to proceed with the analysis.

This will result in the change of a data set and discarding certain observations which may cause

a loss of information for decision makers.

Chukhrova and Johannssen (2019) pointed out that, despite statistical regression analysis being

the most reliable approach in determining the effect of independent variables to the depen-

dent variables, problems may arise. Fuzzy regression analysis was introduced to address the

shortcomings of statistical regression analysis. These shortcomings include difficulty in ver-

ifying distribution assumptions, insufficient data to support statistical regression analysis and

involvement of human judgment when collecting data. Also, the casual relationship between

a response and an explanatory variable that was fuzzy in nature was investigated using fuzzy

regression analysis.

A study by Khademi et al. (2017 ) modeled concrete’s compressive strength with 173 different

designs using an artificial neural network, multiple linear regression model and adaptive neuro
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inference system. The study concluded that multiple linear regression analysis was unreliable

because of the non linearity which was observed in the parameters that were used. On the other

hand, the other two methods presented more accurate results. Selçuk Öğüt (2006) modeled

car ownership in Turkey. According to the study, the interrelationship between the predictor

variables proved a challenge for a classical regression analysis to be performed which resulted

in the use of fuzzy regression analysis.

Literature revealed that, for one to perform a regression analysis, regression assumptions may

hold true. Hence, it is in this context an approach that is used to model cross sectional data was

established. In particular, this study aimed to model the cross sectional data for the sale price

of residential properties in Ames and the model fit for the data was determined. Determining

the model fit for the cross sectional data with uncertainties will put any researcher in the best

position to offer some alternatives to the problem.

From the given discussion, it was evident that modeling cross sectional data with uncertainties

could result to unreliable results. It was for this reason a fuzzy regression analysis method was

used to model cross sectional data for the sale price of residential properties which is uncertain

to attain accurate and reliable results.

1.2 Statement of the problem

Regression analysis has been used as a statistical technique to investigate the quantitative

correlation between output variable and input variables. This technique is applied if the statistical

regression assumptions hold true. Linearity, normality, homoscedasticity and absence of multi

colinearity are some of the assumptions that have to be true for classical regression analysis to

be applied (Al-Kandari et al 2020).

To establish consistency and robustness in the models, Pandelara et al (2022 ) points out that

traditional statistical models have a criteria and assumptions about the underlying data such as

precision or normality. However, fuzzy regression gives an extension of classical regression
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that is based on possibility theory rather than probability theory and is employed when available

data is restricted or variables interact in a specific way.

Further Chukhrova and Johannssen (2019) pointed out that, despite statistical regression analysis

being the most reliable approach in determining the effect of independent variables to the

dependent variables, problems may arise. Fuzzy regression analysis was introduced to address

the shortcomings of statistical regression analysis. These shortcomings include difficulty in

verifying distribution assumptions, insufficient data to support statistical regression analysis and

involvement of human judgment when collecting data. Also, the casual relationship between

a response and an explanatory variable that was fuzzy in nature was investigated using fuzzy

regression analysis.

Due to the use of cross sectional data in this study, uncertainity between the sale price of the

residential properties in Ames and the lot area, garage area and total basement square feet

was visualized which classical regression analysis has not been addressed from Chukhrova and

Johannssen (2019) and Pandelara et al (2022) studies. Also classical regression assumption such

as normality, linearity and homoscedasticity were not upheld. Therefore, this study modeled

cross sectional data of the sale price of residential properties in Ames using fuzzy regression

analysis.

1.3 Significance of the study

The study determined a fuzzy regression technique for modeling cross sectional data that is

uncertain and where non-normality, non-linearity and heteroscedasticity exist. Fuzzy regression

technique is of great importance to any researcher interested in modeling cross sectional data

where statistical regression assumptions do not hold true. Furthermore, the results enable for

policy formulation based on the data’s fuzziness description where stake holders can determine

the value of residential property within a given range.
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1.4 Research Objectives

1.4.1 General Objective

The general objective of this study was to model cross sectional data of the sale price of

residential properties in Ames using fuzzy regression analysis.

1.4.2 Specific Objectives

The specific objectives of the study were to:

(i) Perform diagnostic tests on fuzzy regression assumptions

(ii) Fit the fuzzy linear regression model.

(iii) Evaluate the fuzzy linear regression model.

1.5 Research Questions

(i) Cross sectional data assumes the properties of fuzzy regression.

(ii) Fuzzy linear models can fit cross sectional data.

(iii) Fuzzy linear regression model are efficient in fitting cross sectional data.

1.6 Scope of the study

The study was limited to data acquisition and analysis, derivation, fitting and evaluation of fuzzy

linear regression models using fuzzy regression analysis.
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CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

The chapter highlights streams of thoughts that have contributed to fuzzy linear regression. To

begin with, linear regresion has been discussed as it forms the basis of fuzzy regression analysis.

2.2 Linear Regression

In real life situations, outcomes are as a result of a reason. Rheumatology study done by

Lunt (2015) the outcome is referred to as a response variable denoted by Y and the reason is

referred to as explanatory variables denoted by X1, . . . , Xk. k indicates that there are more

variables. During the computation of these models errors do occur which are assumed to follow

a normal distribution. The model is referred to as a linear regression model and is represented

as Ŷ = β0 + β1x1 + β2x2 · · · + βnxn where β0 is the intercept, β1, . . . , βn are unknown

regression parameters and x1, . . . , xn are the explanatory variables. Hypothesis testing and

confidence intervals are used to make inferences on the type of data being used. Before fitting

the linear regression model using any given data, checking the assumptions of regression is

useful. Linear regression analysis therefore is considered to be an effective method of modeling

various relationships when the validity of assumptions is observed (Schneider et al.,2010).

According to Marchionni et al. (2014) multiple linear regression approach was used to establish

the cost functions, based on the hydraulic parameters and known physical characteristics of

assets of sewer systems. Data from a construction group under the administration of the Aguas

de portugal was analyzed following a four step procedure where the functions of costs were

evaluated based on additive multiple linear regression. Uni-variate and polynomial regression
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were considered as special cases in the multiple linear regression analysis. The model was

developed by the R software. Some variables used in this study indicated a reasonably good

correlation and others indicated a weak correlation, an increase in the amount of the available

data was found to be an option to improve the observed weak correlation. A comparison of the

functions of cost with other studies showed that the generated cost functions were highly robust

and reliable compared to the functions utilized in the study. The study recommended the use of

more data to improve the cost function in the analysis

2.3 Fuzzy Regression

Fuzzy regression analysis was used to model ownership of cars in Turkey (Selçuk Öğüt, 2006).

Ownership of cars was not common in Turkey before 1970, thereafter ownership of cars became

common in the country creating a database to form a reliable model. The study used the Pearson

correlation coefficient to check the inter correlation between the predictor variables. According

to the study, there was an inter correlation between the explanatory variables making classical

regression analysis unfit for analyzing the data. The fuzzy regression technique was used to

model the data despite the interrelationship observed between the variables. The possibilistic

linear regression method was employed to model the data where a three step procedure was used

to model these relationships. The efficiency of these models was assessed using the total error

of squares, as the variables were increased in the models, the total error of squares diminished.

The use of fuzzy linear regression indicated broad ranges in estimation which is not helpful in

application. For the ranges between the lower and upper bound to decrease, and observed values

to be situated within range, the study recommended increasing the quantity of model variables.

Chen et al. (2006) modeled the degree of comfort in AIR CONDITIONED rooms. Comfort

was considered to be subjective hence making it difficult for statistical approaches to handle the

subjective terms effectively. Data was collected through experiments conducted in three AIR

CONDITIONED setups. Five explanatory variables were considered to evaluate the quality of

comfort. Possible correlation between the factors was examined at the start and at the end of the
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experiment using principal component analysis which was also considered in the removal of the

existing outliers. Subjective individual feeling was observed to dominate in the air conditioned

rooms. The influence of the subjective independent variable led to the use of fuzzy approaches.

Two fuzzy regression models were utilized to analyze the thermal comfortability due to space

limitations and limited data. The study suggested an extensive further research study using

increased data sets and other fuzzy methods to assess the various pros and cons of the method.

The relationship between the targets and ecological parameters of a regulatory system was con-

sidered to be uncertain. Kropat et al. (2016) introduced the theory of fuzzy target environment

systems where related fuzzy regression models were discussed using a possibilistic regression

model. The crisp predictor-fuzzy response factors and fuzzy coefficients were used with a

representation of symmetric triangular fuzzy numbers. Fuzzy regression analysis centered on

symmetric triangular fuzzy coefficients was found to be rigid in representing the variance be-

tween datasets. This resulted in the adoption of a regression analysis of target ecological data

centered on asymmetric triangular fuzzy number where the possibilistic model was obtained.

It was proposed that techniques from fuzzy least squares regression centered on a reduction of

the total square error of the output should be considered and solved.

The fuzzy logic approach has been used in real estate valuation to predict the performance of

the real estate (Sarip et al., 2016). To estimate the property value, the study used fuzzy least

squares models and adaptive neuro fuzzy inference system. The performance evaluation of the

models was done by testing the effectiveness and performance using the fuzzy approaches by

comparing their prediction results using the MAE evaluation criterion. The study established

that higher ranking performances of the proposed fuzzy least squares regression based approach

is significant in real estate valuation. Further, the study suggested other models to be applied to

other datasets involving different areas to check if the results are different from the conclusion

made in the study.

Customer satisfaction with a new product design has also been modeled by fuzzy regression

analysis. According to Nazari-Shirkouhi and Keramati (2017), the best fuzzy regression model
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for product design and policy making was determined. Data was collected from a study

conducted in a freezer refrigeration industry using four aspects of determining product features.

A two stage algorithm determined the required model. The index of confidence, was the first

stage followed by error based measures as the outputs for data envelopment were applied. Six

models were considered to be efficient in modeling the correlation between the level of customer

satisfaction and the four aspects used as input variables. A change in the order of the two-stage

algorithm was applied to check if there was any effect on the models. It was observed that

the first step gave the required results than the second step. It was suggested that the proposed

methodology for product design is better since it took into account multiple computation.

Multiple linear regression analysis and fuzzy logic models have been utilized for the functional

service forecasting of the cultural heritage. The fuzzy inference system model under fuzzy logic

models was used to determine the classification with regard to built heritage life and functional

service. Hence, giving preference to preventive and maintenance protective measures to cor-

responding categories of building thus maximizing cost incurred in maintenance actions. On

the other hand, MLR model has been used to arrange the variables affecting approximations of

heritage buildings. The study highlighted 17 susceptibility and risk factors affecting building

service life. Based on the samples performance, it was found that this method was complex

and required specific software to compute the functionality index. A multiple linear regression

analysis described a simple model to forecast the serviceability of the building whereby vari-

ables with a maximum contribution on degradation phenomena were identified. One hundred

churches with similar constructive attributes and contrasting serviceability levels were exam-

ined. From this research, it was reported that decision makers can develop the most suitable

approach for the heritage building taking into account efficient maintenance strategies (Prieto

et al., 2017).

Further, FLRM and MLRM have been applied to predict mulberry leaf yield. The research

investigated the effects of the factors that determine the production of the leaf yield mainly the

quantity of leaves for each plant and the percentage moisture content by estimating the parameters
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of both models. The parameters of the MLRM were computed using the least square method

and assumptions of linear regression were taken care of throughout the study. Consequently,

the parameters of FLRM were approximated by decreasing the cumulative uncertainty of the

model data combination with respect to the limitation that every data point lies in the range of

the estimated value of the output variable. To show the relationship between leaf yield and its

attributed characteristics, the models were fitted by a statistical software. From their analysis,

the average width under MLRM was higher than under FLRM. Therefore, FLRM which had

the least width was considered to be the most efficient (Bhavyashree et al., 2017) .

Fuzzy linear regression analysis study by Zhou et al. (2018) formulated a relation of house

price with some factors to provide a framework for governmental agencies to facilitate decision

making processes while controlling the prices of houses in the real estate market in China.

The factors influencing house price affordability were considered to support decision making

process which included policy factors and non policy factors. A survey conducted by interview

questionnaires on two hundred employees showed that 53 employees provided responses that

were contrary to the actual situation. A statistical analysis was done on the remaining 147

questionnaires where two observations detected as outliers were rejected. The remaining 145

observations were used to formulate FLRM. House price affordability was analyzed using

classical distance measures of the fuzzy linear regression model (Diamond, 1988).

Modeling of FLRM and comparison of derived coefficients was done using non-symmetric and

symmetric triangular fuzzy numbers to obtain a fitting degree of the approximated and real

values of house prices affordability. The fitting difference of the approximated ranged between

0 and 0.8 for each set of data indicating that this model had a good fitting object since the degree

of fit ranged from 0 to +∞. The fitting difference of FLRM using non-symmetric coefficients

was minimal compared to that with symmetric fuzzy coefficients. Therefore, the method

used to construct FLRM using non-symmetric fuzzy coefficients provided the most appropriate

fitting. It was concluded that the selected policy variables had a maximum effect on house

prices affordability with real estate tax reporting the greatest impact. The non-policy variables
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demonstrated that customers possess personal housing expectations and preferences (Zhou et

al.,2018). The study recommended that for optimal strategy, micro and macro parameters be

considered for further research.

A study by Sorkheh et al. (2018) compared FLRM and MLRM lentil yield management. FLR

method was used to estimate the yield by comparing inference capabilities with the multiple

linear regression approach to investigate the efficient model. Fuzzy linear equations and multiple

linear equations were obtained using a statistical software. Close data were organized as fuzzy

numbers and the yield of the lentil genotypes was modeled by the FLRM andMLRM. The close

data organized as fuzzy numbers were defuzzified using the center of area method to obtain the

actual value representing it. In comparison of the FLRM to MLRM, FLRM was the best model

in terms of the quantity of involved variables leading to the easiness of calculation with regard

to it’s RMSE which is the minimum error value. Based on the study, MLRM was found to be

the most preferred model in modeling data while fuzzy linear regression analysis was found to

be useful method especially when dealing with large data.

Further, Pandit et al. (2021) studied the efficiency of the statistical regression models and fuzzy

regression model using sweet corn yield data affected by the cumulative dry matter of weed and

cumulative density of weed. Data collected from these variables was utilized to evaluate the

efficiency of these approaches. The simple linear regression model assessed each independent

variable with respect to the FLRM while the MLRM assessed both independent variables with

respect to the fuzzy linear regression model. The mean width of the forecast interval was used

to calculate the model efficiency. During the assessment, the cumulative dry matter of weed

and cumulative density of weed showed a negative result on the yield of sweet corn with respect

to the simple linear regression model. MLRM taking into consideration both cumulative dry

matter of the weed and cumulative density of the weed as regressors showed sign alteration

in case of total density of weed even though there were significant at one percent level, this

alteration of sign was considered to be multi collinearity. In fuzzy linear regression model

indistinctness attributed with the center was less when the input variables were included in the
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model instead of only one of these variables when they were incorporated within the model, the

average widths of the simple linear regression model and MLRM were large compared to fuzzy

linear regression model hence indicating maximum correlative efficiency of the fuzzy linear

regression method.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

The chapter outlined diagnostic tests for verifying fuzzy linear regression assumptions, methods

for fitting FLRM and evaluation techniques of FLRM. The model of multiple linear regression

was also discussed as it created the basis for using fuzzy regression models.

3.2 Descriptive Statistics

Secondary data was used in this study. The data set contained assessed values for individual

residential properties sold in Ames. The value of the residential properties was measured as

price which was determined by the size of lot area, total basement square feet and garage area

of the residential properties. To achieve the objectives of the study 600 observations were used

from the collected data. Three predictor variables were used which included lot area indicating

the lot size in square feet (x1), total basement area in square feet (x2) and size of garage area

in square feet (x3). On the other hand, the response variable was the price of a residential

property sold in Ames in US dollars (y). Since Kenya is a developing country, the data set

used from Ames will help the country in the sector of housing when determining the prices of

houses which are constructed under the affordable housing program. The analysis of the data

was carried out by the use of the R statistical software.
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3.3 Linear Regression

According to Kumari and Yadav (2018), linear regression is an analytical step for determining

the response variable using an explanatory variable. An association between two variables is

measured in which a response variable is predicted grounded on at least one explanatory variable.

3.3.1 Multiple linear regression model

The use of multiple explanatory variables and one response variable resulted in the use of a

model of Multiple Linear Regression (MLR). The MLR model with k predictor variables is

represented in Equation 3.1;

y = β0 + β1x1 + . . . βkxk + ε (3.1)

where y denotes the response variable, x1, . . . , xk represent k explanatory variables and

β0, . . . , βk denote the unknown regression coefficients of the model to be estimated. β0 is

the value of y when the value of x1, . . . , xk is equal to zero and β1, . . . , βk represent measures

of the expected changes in y per unit change in x1, . . . , xk respectively.

3.3.2 Assumptions of a linear regression model

Assumptions of linear regression analysis have to be satisfied before performing linear regression

analysis (Uyanık and Güler, 2013).

According to Ernst and Albers (2017) assumptions of the model on the basis of ordinary least

squares (OLS) method include:

i. Independence of observations to ensure that the explanatory variables aren’t too highly
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correlated;

ii. When all variables are held constant, the relationship between each explanatory variable

and response variable is thought to linear.

iii. Distribution of the residuals should have a normal distribution that is, the residuals being

distributed around zero; and

iv. The distribution of an error term should have constant variance for all observations.

3.3.3 Diagnostic Testing

To evaluate whether the assumptions of OLS are upheld, diagnostic tests were conducted.

Hickey et al 2019 pointed out the diagnostic tests to be done to check whether the data in use is

unusual or helpful and to check if any modifications are to be done. The main diagnostic tests

performed in this study were:

(a) Test for normality

Normal q-q plot with the Shapiro wilk test were utilized to verify if the response variable

follows a normal distribution. q-q plot gave a graphical visualization of normality. If the

residuals observed from the q-q plot were not deviating severely from the straight line then the

residuals had a normal distribution.

Since the graphic couldn’t be enough to conclude that normality exists, a quantitative result was

computed. Shapiro wilk test which is an hypothesis test was used with a null hypothesis that the

data set has been generated from a normal distribution. If the p-value exceeded 0.05 observed

from the Shapiro Wilk test, then the response variable follows a normal distribution under the

following hypothesis:

H0 : The variable follows a normal distribution

H1 : The variable does not follow a normal distribution
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(b) Test for linearity

Scatter plots were used to test linearity between the response variable and the explanatory

variable. In multiple linear regression analysis, a scatter plot for each explanatory was plotted

to check if linearity exists. If a pattern shows up in the plots no linear observation will be

observed.

(c) Test for heteroscedasticity

Heteroscedasticity inflates the standard error raising the likelihood of making a type two error

and failing to rule out an inaccurate assumption about a coefficient. Breusch-pagan test for

heteroscedasticity in linear regression was applied to verify this assumption of no homoscedas-

ticity. The variance of the errors from a regression was tested whether it is dependent on the

values of the independent variables. If the p−value was below 0.05 then there was an indication

of heteroscedasticity, that is the variance across entities is not constant. Using the following

hypothesis:

Ho : No heteroscedasticity

H1 : Heteroscedasticity present

(d) Test for multicollinearity

The degree of association present among the input factors in a model of regression was tested

using the variance Inflation Factor (VIF). VIF quantifies the severity of multicollinearity in an

ordinary leasr squares regression analysis. It provides an index that measures how much the

variance of an estimated regression coefficient is increased because of collinearity. If the value

of VIF is less than 1 it could indicate that there is no association in between the independent

variables and a value greater 5 could indicate a severe correlation.

However, in some situations these assumptions may fail to be satisfied, as reported by Ayinde
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et al (2012) making it difficult to fit the linear regression model. Alternative method was

considered to ensure that the inferences to be made were significant on the data in use for

example the use of non statistical regression analysis methods in which fuzzy regression is

considered in this case.

3.4 Fuzzy Linear Regression

Fuzzy regression gives a different view of statistical regression. It was applied to estimate

the practical correlation in a fuzzy setting between the dependent and independent variables.

The response and the explanatory variables are required to follow a normal distribution in

statistical regression analysis. However, there are cases where these variables may not follow

this distribution, regression assumptions may not hold true and imprecision between variables

could exist. Estimating the regression coefficients and making subsequent prediction becomes

a challenge to the classical regression analysis, hence the use of fuzzy linear regression analysis

(Tanaka et al.,1989).

3.4.1 Fuzzy Numbers

In fuzzy domain crisp numbers are represented as fuzzy (uncertain) numbers. A fuzzy real or

actual number Ã is defined as uncertain set of actual numbers R. Every actual value number

x ∈ R belongs to the uncertain set Ã with 0 to 1 membership degree according to a membership

function µÃ(x) : x → [0, 1]. A membership degree of 0 implies that the value of x in the

real number is excluded in the fuzzy number Ã while a membership degree of 1 denotes that

x’s value in the real number is incorporated in Ã. A group of all observations in real value

observations such that their membership function is greater than zero is referred to as the support

for fuzzy number Ã. Fuzzy numbers are described in different functions of membership. Fuzzy

numbers with triangular membership functions were used in this study.

A triangular fuzzy number (TFN) Ã is characterized by a membership function which is
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triangular µÃ(x) that dictates a joint set of attainable values for a fuzzy number Ã, a set of x

with µÃ(x) > 0 where µÃ(x) = 1 to the greatest extent of x.

µÃ(x) =



a−x
α

if a− α < x < a

1 if x = a

x−a
α

if a < x < a+ α

0 otherwise

(3.2)

A fuzzy number Ã which is triangular is defined by its mean value a, left width α and right

width α Škrabánek and Martínková (2021) as shown in Figure 3.1

Figure 3.1: Triangular Fuzzy Number

Figure 3.1 (a) illustrates a triangular fuzzy number in symmetric form whose left and right

widths are similar. A triangular fuzzy number whose left and right spreads are unequal illustrates

an asymmetric triangular fuzzy number as evident in Figure 3.1 (b). Figure 3.1 (c) expresses a

special triangular fuzzy number whose widths are equal to zero.

3.4.2 Fuzzification

The process of fuzzification involves changing actual numbers to fuzzy value observations. The

methods used in fuzzy linear regression model requires the variables either the response or the

explanatory variable to be fuzzy. This implies that the values of these variables are not regular

real numbers but rather to a connected set of potential values with each value having a weight

between 0 and 1.
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A fuzzy number is represented by three points for example a set of three numbers (m1,m2,m3),

where m1,m2 and m3 represent the left spread, the central value that is the most probable value

and the right spread respectively.

Spreads represent the closeness to the real value observation that is the maximal deviation from

the average score or observation which is the central value or the mode or peak point within the

fuzzy number.

The fuzzy methods used in this study necessitated the real value observation of the response

variable be modified into a fuzzy number, that is the response variable (Y ) observed to take this

form Ỹ = (yi, vi, vi).

Where yi was the possible value of the response variable, vi and vi were the left and right

spreads.

Methods of fuzzification

The basic methods that can deduce triangular fuzzy numbers from actual value observations

include;

(i) The mean and zero methods calculate the sTFN, the mean method determines the possible

TFN value as the average of x given y and standard deviations given as left and right

spreads and the zero method inserts zeros to both spreads. These methods compute sTFN

(ii) The median and error method can enumerate either sTFN or nsTFN based on the data

present. The median method provides the central values as a median and left and right

spreads are determined as distance of the first and third quartile from the median. The

error method utilizes a user characterized numeric value of vector for the spreads.

(iii) Simulation method through various statistical distribution methods can also be applied to

generate fuzzy numbers if the discussed methods fail to give the results required.
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3.4.3 Fuzzy Linear Regression Model

The FLRM has the following structure:

Ỹj = Ã0 + Ã1x1j + . . . Ãixij + · · ·+ Ãnxnj with j = 1, . . . ,m, i = 1, . . . , n (3.3)

where; n is the quantity of independent variables xij , m is the quantity of data, and Ỹj is the

fuzzy predicted value of the output variable considering the jth data.

Because uncertainty is incorporated into the model via fuzzy numbers, there is no error term

in the fuzzy linear regression model. Different fuzzy linear models are used depending on

the observations that variables used take, sensitivity to outliers and the number of explanatory

variables. For example,

i. When the explanatory variables are actual value observations and the response variable

takes a non-symmetric observations. The Fuzzy least squares (FLS) model and Fuzzy

least absolute error model (FLAR) are used, however FLS model works well for simple

fuzzy linear regression whereas FLAR supports multiple linear regression.

ii. When explanatory variables take actual value observations and response variable assumes

symmetric fuzzy observations the possibilistic linear regression model is used, it also

support multiple regression.

iii. Fuzzy linear regression model with multiple objectives abbreviated as MOFLR is used

when both observations of the response variable and the explanatory variable are sym-

metric fuzzy observations.

iv. The least squares possibilistic linear regression model is used when the independent and

dependent variables are actual value observations but the estimated response variable is

non-symmetric observation.
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Table 3.1: Characteristics of fuzzy linear regression procedure

Method m x,X̃ y,Ỹ ˆ̃Y sensistivity to outliers

FLS 1 R nsTFN nsTFN medium

FLAR ∞ R nsTFN nsTFN medium

PLR ∞ R sTFN sTFN very high

OPLR ∞ R sTFN sTFN low

MOFLR ∞ sTFN sTFN sTFN medium

PLRLS ∞ R R nsTFN very high

The model should be applied if the following assumptions hold true;

3.4.4 Assumptions of fuzzy linear regression model

Assumptions of the model of fuzzy linear regression were on the basis of problems that arise

from statistical regression analysis.

(i) The residual variation is unequal throughout a range of measured values.

(ii) Correlation of the same variables between two successive time intervals due to incorrect

specification of the model.

(iii) Distribution of the error term is due to fuzziness unlike randomness which is observed in

the error term in statistical linear regression model.

(iv) Availability of inadequate data when the number of observations is insufficient.

3.4.5 Estimation of the fuzzy regression model parameters

Two approaches were used to estimate parameters in fuzzy regression model namely, the

minimum fuzziness criterion and the least squares criterion.
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Minimum fuzziness criterion

The minimum fuzziness criterion was used when the total spread of the fuzzy numbers was

required to be small. Coefficients of the FLRM in case they were fuzzy triangular numbers, the

function Yj will also be a fuzzy number which is triangular with the following mean (Ya,j) and

spread Yc,j .

centre : Ya,j = ao + a1x1j + · · ·+ aixij + · · ·+ anxnj

Width : Yc,j = c0 + c1|x1j|+ · · ·+ ci|xij|+ · · ·+ cn|xnj| (3.4)

The degree h(0 ≤ h < 1) is chosen so as the available data will be included in the inferred

fuzzy number Yj .

When there is sufficient data (m > 10) (where m is the number of observation) h = 0 can be

set which maximizes the regression ambiguity. The chosen value for h must be greater than 0

or equal to 0 but in any case less than 1 since h = 1 will turn the FLRM into classical linear

regression model. Since the total fuzzy number spread Yj, j = 1, 2, . . . ,m was required to take

the least value as possible it was minimized as in Equation 3.5

J = min{mco +
m∑
j=1

n∑
i=1

ci|xij|} (3.5)

Subject to

yj ≥
n∑

i=0

aixij − (1− h)
n∑

i=0

ci|xij| (3.6)

yj ≤
n∑

i=0

aixij + (1− h)
n∑

i=0

ci|xij| (3.7)

ci ≥ 0 where i = 0, 1, . . . , n and j = 0, 1, . . . ,m

If h ̸= 0 is singled out the uncertainty of the generated model will be maximum compared to

h = 0.

To derive the results concerning center values and spreads of the fuzzy triangular number that

represent the coefficients of fuzzy linear regression, computer software was used. To completely

21



exploit fuzzy linear regression, coefficients of fuzzy regression model were data driven.

Least squares criterion

A study by Diamond (1988) proposed a metric fuzzy number distance method for developing

fuzzy linear regression models. To execute the approximation concepts employed in statistical

regression analysis, the rules employed in statistical regression analysis objective functions have

to be replaced by fuzzy distance measures. A fuzzy version of least squares on the basis of

distance is defined as

minimizeS(Ã) =
n∑

i=1

d(Ỹi
∗
, Yi)

2 = ((yi−yiL)−(ŷi−ŷiL))
2+(yi−ŷi)

2+((yi+yiR)−(ŷi+ŷiR))
2

(3.8)

in which Ỹi
∗
, i = 1, 2, ..., n is the fuzzy result.

Yi is the observed fuzzy response variable.

Yi = (yiL, yi, yiR)

Assuming that Yi was composed of a non-symmetric triangular fuzzy numbers then Yi =

(yiL, yi, yiR). The coefficients of regression are asymmetric triangular fuzzy numbers with it’s

equivalent least square given as in Equation 3.9

SD
asy(Ã0, Ã1, . . . , Ãm) =

m∑
i=1

{( m∑
k=0

akLxik−yiL

)2

+

( m∑
k=0

akxik−yi

)2

+

( m∑
k=0

akRxik−yiR

)2}
(3.9)

To calculate the solution of Ãk = (akL, ak, akR) the subsequent set of equations were

generated for k = 0, 1, . . . ,m by computing the partial derivatives akL, ak and akR to be equal
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to 0.

n∑
i=1

(
xik

n∑
k=0

akLxik

)
=

n∑
i=1

yiLxik

n∑
i=1

(
xik

m∑
k=o

akxik

)
=

n∑
i=1

yixik (3.10)

n∑
i=1

(
xik

m∑
k=0

akRxik

)
=

n∑
i=1

yiRxik

Solving these equations gives values of akL, ak and akR where the fuzzy parameters are

estimated and hence FLRM inferred. If the regression coefficients are taken to be sTFN that is

Ãj = (aj, cj) the distance expression was given as:

SD
sy(Ã0, Ã1, . . . , Ãm) =

m∑
i=1

{[ m∑
j=0

(aj−cj)xij−yiL

]2
+

( m∑
j=0

ajxij−yi

)2

+

[ m∑
j=0

(aj+cj)xij−yiR

]2}
(3.11)

Similarly, the partial derivatives of ak and ck k = 0, 1, . . . ,m are equated to 0. Whereby the

subsequent set of equations are determined;


2
∑n

i=1(xik

∑m
j=0 cjxij) =

∑n
i=1[xik(YiR − YiL)]

3
∑n

i=1(xik

∑m
j=0 ajxij) =

∑n
i=1[xik(yiR+yiL+yi

)]

(3.12)

for k = 0, 1, . . . ,m

Also figuring out these equations, parameters were estimated which were symmetric triangular

fuzzy numbers.

3.4.6 Evaluation of the Model

Fuzzy regression model was assessed on the basis of squared distances and deviations of

membership functions from the observed Ỹ and predicted ˆ̃Y fuzzy output observations Ỹ . The

squared distances were expressed by the measure of goodness of fit (G) between the observed Ỹ
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and predicted ˆ̃Y fuzzy response value. The measure G was obtained out of the squared distance

between fuzzy numbers which are triangular as given in Equation 3.8 and it was defined as in

Equation 3.13

G =
1

n

n∑
i=1

([(yi − yiL)− (ŷi − ŷiL)]
2 + (yi − ŷi)

2 + [(yi + yiR)− (ŷi + ŷiR)]
2) (3.13)

Low G values could imply that the model sharply corresponds to the observations.

Model predictions and output membership functions were assessed by the total error of fit. It

was computed as shown in Equation 3.14

∑
E =

n∑
i=1

Ei (3.14)

where Ei was a contrast of membership functions between the ith observation Ỹi and the ith

model prediction ˆ̃Yi with respect to Ỹi’s membership function.
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CHAPTER FOUR

RESULTS AND FINDINGS

4.1 Introduction

This chapter presents results and discussions of data analysis using fuzzy linear regression

methods. The uncertain change of the sale price in the residential properties resulted in the

conversion of the real value observations of the sale price (the response variable) to uncertain

number was outlined. Fuzzy linear regression model was fitted, evaluated and discussed using

three fuzzy regression methods.

4.2 Diagnostic test of fuzzy linear regression assumptions

The study summarized the data set as presented in Table 4.1

Table 4.1: Summary of data used

price lot area Total basement.sf garage area

Min. 12789 1476 160.0 0.0

1st Qu. 128425 7433 795.8 336.0

Median 158000 9074 992.0 475.5

Mean 168188 8899 1034.3 457.5

3rd Qu. 197525 10625 1258.0 566.8

Max. 337500 31770 2110.0 932.0

Before fitting the fuzzy linear regression model, normality, linearity, heteroscedasticity and

multi collinearity tests were performed to check if the fuzzy linear regression assumptions hold

true.
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4.2.1 Test for normality

Observations from the q-q plot as shown in Figure 4.1 indicated that, not all the values of price

fall along the reference line denoted by the blue line.

Figure 4.1: Q-Q Plot of price

Results from Shapiro wilk test using the p− value > 0.05 level of significance, shows that

the p − value was 6.837e − 11 which is less than 0.05. Therefore the null hypothesis was

rejected. From the two analyses it was assumed that non-normality exists.

4.2.2 Test for linearity

A scatter plot of each independent variable and dependent variable was plotted to check for

linear correlation between the predictor and response variable used in the analysis as depicted
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in Figure 4.2 to Figure 4.4.

Figure 4.2: Scatter plot of Lot Area
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Figure 4.3: Scatter plot of Total basement Square Feet
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Figure 4.4: Scatter plot of Garage area

From the scatter plots, it was deduced that the data points in Figure 4.2, Figure 4.3 and

Figure 4.4 indicate a non-linear relationship between lot area versus price, total basement floor

square feet versus price and garage area versus price.

4.2.3 Test for homoscedasticity

Breusch-pagan test results indicated a p−value= 1.64e−14 which is less than 0.05 significance

level. Thus the null hypothesis was rejected showing that heteroscedasticity exists among the

variables.
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4.2.4 Test for multi collinearity

Scores computed by variance inflation factor as shown in Table 4.2 were less than 5 which was

the reference value. This shows that there was no multi-collinearity among the variables.

Table 4.2: VIF values

lot area total basement area garage area

1.114201 1.245163 1.230160

4.3 Fitting fuzzy linear regression model

Data visualization indicated that, there was an uncertain change in the sale price of the residen-

tial properties when there is a change in the area size of lot area, total basement floor squar e

feet and garage area respectively. Non-linearity, heteroscedasticity and non-normality among

the variables was also observed.

Applying classical regression analysis where there is uncertainty, non-normality, heteroscedas-

ticity and non linearity among variables becomes a challenge which can be addressed by fuzzy

regression analysis.

Fitting the fuzzy linear regression model involved the conversion of real numbers to fuzzy num-

bers and using the PLRLS, PLR and FLAR methods to fit the fuzzy linear regression model.

The unknown parameters of the model were estimated and the fitted models were expressed

using the central location of the fuzzy regression model, the maximum and minimum limit of

the model support interval and visualised on their respective plots.

4.3.1 Fuzzification

Potential fluctuations (uncertainty) of the prices motivated the fuzzification of the sale price

of the residential properties to fuzzy numbers. A statistical software R was used to fuzzify
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price values where uniform distribution function was used to impute the spreads of the price.

The error and simulation methods were used for fuzzification. The error method was used to

fuzzify the real numbers of price to fuzzy numbers. This resulted to the values of price in terms

of symmetric triangular fuzzy numbers. An illustration of the section of symmetric triangular

fuzzy numbers is presented in Table 4.3.

Table 4.3: Symmetric Fuzzy number.

price left spread right spread

215000 9976.275 9976.275

105000 10533.471 10533.471

172000 10284.042 10284.042

244000 10478.234 10478.234

189900 10553.245 10553.245

195500 10925.274 10925.274

213500 9730.295 9730.295

Unequal spreads of the triangular fuzzy number were simulated to generate the non sym-

metric triangular fuzzy number. Left spreads were simulated within a range of 10000− 12000

and the right spreads within a range of 5000− 8000 respectively using the uniform distribution.

Table 4.4 shows the subsection of the simulated results.
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Table 4.4: Non symmetric Fuzzy number.

Price left spread right spread

215000 10373.98 6438.885

105000 10136.96 6727.261

172000 10317.42 6625.119

244000 11683.12 6904.427

189900 10746.00 6259.994

195500 11173.55 6705.355

213500 11936.85 5617.864

4.3.2 Fitting fuzzy linear regression model using PLRLS

Using Equation 3.3 the regression coefficients of the model were estimated using the R software.

Focusing on each explanatory variable coefficients of the spreads and centers of the model were

given in Table 4.5.
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Table 4.5: Central and Spreads coefficients of FLR model using PLRLS method

Variable Spread center

coefficient value coefficient value

Lot Area a0L 38631.09 a0 116408.5

a0R 142008.1 a1 5.818

a1L 12.55

a1R 2.5145

Total basement SF a0L 105884.36 a0 72110.26

a0R 124525.63 a1 92.89

a1L 24.21

a1R 32.44

Garage Area a0L 43156.903 a0 81056.90

a0R 130290.07 a1 190.46

a1L 222.656

a1R 28.39

where (a0, a1) are the central values, (a0L, a1L) are left spreads and (a0R, a1R) are the right

spreads coefficients of the fuzzy linear regression model.
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Lot area

Central location of the fuzzy regression model:

Price = 116408.5 + 5.8188 ∗ Lot area

Minimum limit of the model support interval:

Price = 77777.43− 6.7304 ∗ Lot area

Maximum limit of the model support interval:

Price = 258416.7 + 8.3333 ∗ Lot area

Total basement area

Central location of the fuzzy regression model:

Price = 72110.26 + 92.8909 ∗ Total basement sf

Minimum limit of the model support interval:

Price = 33774.1 + 68.6772 ∗ Total basement sf

Maximum limit of the model support interval:

Price = 196635.9 + 125.3298 ∗ Total basement sf

Garage area

Central location of the fuzzy regression model:

Price = 81056.9 + 190.4624 ∗ Garage area

Minimum limit of the model support interval:

Price = 37900− 32.1936 ∗ Garage area

Maximum limit of the model support interval:

Price = 211347 + 218.8612 ∗ Garage area

Spreads of the fuzzy coefficients were required to be as small as possible. From Table 4.5

spreads are observed to have a wide range. The total error of fit was used as a performance

indicator. In this case, it was calculated as 9.440e+13 for the lot area, 8.670e+13 for the total

basement area and 8.648e+ 13 for the garage area.

Fitting the model using three variables from Equation (3.3) the estimated parameters are given

as shown in Table 4.6
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Table 4.6: Parameters of FLR model using PLRLS method.

center left spread right spread

(Intercept) 27420.012701 10018.590675 2.516520e− 14

Lot area 2.120028 4.344706 8.104145

Total basement area 56.132987 0.000000 40.62421

Garage area 139.558384 166.723898 0.000000

Central location of the fuzzy regression model:

Price = 27420.01 + 2.12 ∗ lot area + 56.133 ∗ total basement area + 139.5584 ∗ garage area

Minimum limit of the model support interval:

Price = 17401.42− 2.2247 ∗ lot area + 56.133 ∗ total basement.sf − 27.1655 ∗ garage area

Maximum limit of the model support interval:

Price = 27420.01+10.2241∗ lot area+96.7572∗ total basement area+139.5584∗garage area

It was observed that, when fitting the model using multi variables the spreads of the fuzzy

numbers are minimized as compared to when fitting a single predictor variable to the model.

Also, the total error of fit calculated in this model was 7.1725e + 13 which was minimum

compared to the error of fit calculated when using each single variable.

However, the total error of fit was observed to be too complex when using this method leading

to the use of another method which was the PLR method.

4.3.3 Fitting the fuzzy linear regression model using the PLR method

To reduce the total error of fit, the fuzzy linear regression model was fitted using a new method.

The regression coefficients of the model were calculated and given as shown in Table 4.7
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Table 4.7: Central and Spreads coefficients of FLR model using PLR method

Variable Spread center

coefficient value coefficient value

Lot Area α0 101303.9 a0 169811.10

α1 7.412 a1 0.6144

Total basement SF α0 124835.77 a0 80718.02

α2 28.77 a2 98.07

Garage Area α0 96685.02 a0 124915.36

α3 125.83 a3 93.31

Lot area

Central location of the fuzzy regression model:

Price = 169811 + 0.6144 ∗ lot.area

Minimum limit of the model support interval:

Price = 68507.04− 6.7978 ∗ lot.area

Maximum limit of the model support interval:

Price = 271114.9 + 8.0266 ∗ lot.area

Total basement area

Central location of the fuzzy regression model:

Price = 80718.02 + 98.0736 ∗ total basement area

Minimum limit of the model support interval:

Price = 44117.75 + 69.3004 ∗ total basement area

Maximum limit of the model support interval:

Price = 205553.8 + 126.8468 ∗ total basement area
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Garage area

Central location of the fuzzy regression model:

Price = 124915.4 + 93.3129 ∗ garage area

Minimum limit of the model support interval:

Price = 28230.34 +−32.5159 ∗ garage area

Maximum limit of the model support interval:

Price = 221600.4 + 219.1417 ∗ garage area

Spreads of the variables were observed to be minimum in this method as compared to the

previous method. The total error of fit for the variables using this method was calculated as

9582.3 for the lot area, 8804.4 for the total basement area and 8769.33 for the garage area. The

total error of fit using this method was observed to be minimal as compared to the previous

method. Model coefficients for the multi variables were also calculated and presented in Table

4.8.

Table 4.8: Coefficients of the PLR model.

center left spread right spread

(Intercept) 57443.50 42808.531 42808.531

Lot area 0.4562 6.198 6.198

Total basement area 79.36 0.000 0.000

Garage area 43.06 56.04 56.04

Central location of the fuzzy regression model:

Price = 57443.5 + 0.4562 ∗ lot area + 79.3641 ∗ total basement area + 43.0582 ∗ garage area

Minimum limit of the model support interval:

Price = 14634.97− 5.7423 ∗ lot area + 79.3641 ∗ total basement area − 12.985 ∗ garage area

Maximum limit of the model support interval:
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Price = 100252 + 6.6547 ∗ lot area + 79.3641 ∗ total basement area + 99.1014 ∗ garage area

Minimal spreads are also observed and the total error of fit is 6964.94 which is minimal

compared to the previous method. This indicated that a model fitted using the PLR method is

better compared to the model fitted using the PLRLS method.

4.3.4 Fitting fuzzy linear regression method using the FLAR method

The FLAR method was also used to model the cross sectional data. The reason for this

approach was because the method is a statistic based method unlike the other methods which

are possibilistic. The regression coefficients were asymmetric triangular fuzzy numbers which

were estimated based on Equation 3.9. The regression coefficients are expressed in Table 4.9.

Table 4.9: Central and Spreads coefficients of FLR model using FLAR method

Variable Spread center

coefficient value coefficient value

Lot Area a0L 10013.66 a0 113701.0

a0R 10013.66 a1 4.7715

a1L 0.00

a1R 0.00

Total basement SF a0L 10001.02 a0 61451.87

a0R 10001.02 a2 93.58

a2L 0.01120

a2R 0.01120

Garage Area a0L 10015.04 a0 76500

a0R 10015.04 a3 197.397

a3L 0.00

a3R 0.00
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Lot area

Central location of the fuzzy regression model:

Price = 113701 + 4.7715 ∗ lot area

Minimum limit of the model support interval:

Price = 103687.3 + 4.7715 ∗ lot area

Maximum limit of the model support interval:

Price = 123714.6 + 4.7715 ∗ lot area

Total basement area

Central location of the fuzzy regression model:

Price = 61451.87 + 93.5829 ∗ total basement area

Minimum limit of the model support interval:

Price = 51450.85 + 93.5717 ∗ total basement area

Maximum limit of the model support interval:

Price = 71452.9 + 93.5941 ∗ total basement area

Garage area

Central location of the fuzzy regression model:

Price = 76500 + 197.397 ∗ garage area

Minimum limit of the model support interval:

Price = 66484.96 + 197.397 ∗ garage area

Maximum limit of the model support interval:

Price = 86515.04 + 197.397 ∗ garage area

Using this method, it was observed that spreads were equivalent to zero indicating fuzziness

in the model was minimal compared to the other models. Total error of fit for the models using

single variables was, 1067.72 for the lot area, 1069.97 for the total basement area and 1029.54

for the garage area which was minimal compared to the previous two models.

Using the three variables for modeling the estimated parameters was also given as in Table 4.10.
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Table 4.10: Coefficients when using FLAR method.

center left spread right spread

(Intercept) 34521.06 10001.02 10001.02

Lot area 1.3686 0.000 0.000

Total basement area 47.61 0.0112 0.0112

Garage area 153.763 0.000 0.000

Central location of the fuzzy regression model:

Price = 34521.06+1.3686∗ lot area +47.6059∗ total basement area +153.7627∗garage area

Minimum limit of the model support interval:

Price = 24520.04+ 1.3686 ∗ lot area+47.5947 ∗ total basement area+153.7627 ∗ garage area

Maximum limit of the model support interval:

Price = 44522.08 + 1.3686 ∗ lot area + 47.6171 ∗ total basement.sf + 153.7627 ∗ garage area

The total error of fit was calculated as 1016.92 indicating that the model fitted using the FLAR

method is better than the PLR and PLRLS.

At the next stage, the FLAR method was also fitted using fuzzy numbers which were obtained

through the simulation method. This approach was useful because it was used to check if the

FLAR method was the best when fitting fuzzy linear regression model. Table 4.11 presents the

model coefficients.
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Table 4.11: Asymmetric coefficients using FLAR method.

center left spread right spread

(Intercept) 34521.04 10967.92 6413.87

Lot area 1.369 0.00 0.000

Total basement area 47.61 0.00 0.1776

Garage area 153.76 0.00 0.000

The total error of fit of this model was determined as 1040.23 which is minimum compared

to the models fitted using PLR and PLRLS methods. From the results of the study, different

fuzzy regression methods used to model the sale price of the residential properties gives a

different total error of fit and different range of the spreads.

Models using the PLRLS method were visualized on individual plots while models of the PLR

and FLAR method were visualized on the same plots using the coefficients for the models central

location and both support limits as presented in Figure 4.5, Figure 4.6, Figure 4.7, Figure 4.8,

Figure 4.9, and Figure 4.10 where the total basement area variable was used for illustration.
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Figure 4.5: FLR model of price versus lot area using the PLRLS method
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Figure 4.6: FLR model of price versus lot area using the PLR and FLAR methods
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Figure 4.7: FLR model of price versus total basement area using the PLRLS method
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Figure 4.8: FLR model of price versus total basement area using the PLR and FLAR methods
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Figure 4.9: FLR model of price versus garage area using the PLRLS method
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Figure 4.10: FLR model of price versus garage area using the PLR and FLAR methodS

The plotted results showed that the fuzzy linear regression model based on possibillistic

methods includes all the observations of the sale price which is a result of the wider spreads

as indicated by the light blue shaded region. The purple dotted lines define the fuzzy linear

regression model based on the FLAR methods indicating small spreads compared to other

models.

4.4 Evaluating the fuzzy linear regression models

Goodness of fit measure was used to evaluate how fit the models were when using the PLRLS,

PLR and FLAR methods.

Based on the non-zero spreads in some variables and the number of observations that were used

in the analysis, goodness of fit (GOF) measure was suitable to evaluate these models.
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Table 4.12 and Table 4.13 indicated the GOF and TEF values which were used for evaluation.

Table 4.12: Evaluation summary of the FLR model using one variable.

Real numbers symmetric numbers Asymmetric numbers

PLRLS PLR FLAR FLAR

L.A GOF 60204601702 60476872415 9353241672 9350184563

TEF 9.440e+13 9582.3 1067.72 1087.63

T.B GOF 49311080120 49580636932 7290781522 7288068902

TEF 8.670e+13 8804.4 1069.97 1089.26

G.A GOF 49489585440 49864900581 6206571194 6208347958

TEF 8.648e+13 8769.33 1029.54 1050.95

Table 4.13: Evaluation summary of the FLR model using fuzzy regression methods.

Real numbers Symmetric numbers Asymmetric numbers

PLRLS PLR FLAR FLAR

GOF 36118147000 33104827755 5086862808 5086385724

TEF 7.172498e+13 6964.94 1016.92 1040.23

Comparing the goodness of fit measure of the models using the alternative fuzzy regression

methods shows that the model fitted using the FLAR method had a lower measure of goodness

of fit (G) thus fitting the data better.

Evaluating these models indicated that both the total error of fit (TEF) and GOF are in agreement

that the fitted model using the FLAR method fits the data better.
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CHAPTER FIVE

SUMMARY, CONCLUSION AND RECOMMENDATIONS

5.1 Introduction

This chapter presents the summary, conclusion and the recommendations based on the results

of the study.

5.2 Summary

Modeling sale price of residential properties using fuzzy regression analysis focused on de-

termining the performance of the fuzzy regression methods in data analysis. The study used

secondary data comprising 600 observations of the residential properties. Quantitative research

method was used to determine the variables predicting the price of residential properties. Di-

agnostic tests were done to test if the variables satisfied fuzzy regression assumptions and the R

software was used to analyze the data. Based on the study findings, fuzzy least squares methods

fit fuzzy linear regression models better than the possibilistic linear regression methods.

5.3 Conclusion

The fuzzy regression methods that have been used indicate that the possibilistic linear regression

(PLR) method gives a clear explanation of all the values that are used in the study in determining

the price of individual residential properties. The fuzzy least absolute residual (FLAR) method

provided a statistical view that can be used in determining the fuzziness in the given data. Also,

total error fit (TEF) and goodness of fit measure of the FLAR method are minimal than the PLR

and the (PLRLS) methods. This indicates that models based on FLAR methods are efficient.
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5.4 Recommendations

The following are the recommendations for this research:

(i) Diagnostic tests to be performed on any given data set to determine the model to be used

when fitting the data.

(ii) Fuzzy linear regression models to be used to fit a given data that assumes classical

regression assumptions.

(iii) Fuzzy linear regression models are efficient when fitting cross sectional data.

For further research, the study recommends use of fuzzy linear regression analysis to fit longi-

tudinal data.
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APPENDIX

STUDY CODES

D1<-as.data.frame(D)

D1

library("fuzzyreg")

v<-fuzzylm(Price Lot.area+Total.basement.sf+Garage.area,data=D1,method="PLRLS")

v

GOF(v)

TEF(v)

summary(v)

symmetric fuzzy numbers

F1<-fuzzify(x=dat1price,method="err",err=rnorm(600,mean(10000),sd=500))

F1

F1a<-F1[,-4]

F1a

head(F1a,7)

F2<-cbind(F1a,Lot.area,Total.basement.sf,Garage.area)

F2

head(F2,7)

F3<-fuzzylm(Price Lot.area+Total.basement.sf+Garage.area,data=F2,method="plr",fuzzy.left.y="Al")

F3

GOF(F3)

TEF(F3)

summary(F3)

F3a<-fuzzylm(Price Lot.area+Total.basement.sf+Garage.area,data=F2,method="flar",fuzzy.left.y="Al",fuzzy.right.y

= "Ar")
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F3a

GOF(F3a)

TEF(F3a)

summary(F3a)

plot((F3a))

non-symmetric fuzzy numbers

Pricel<-runif(600,min=10000,max=12000) simulating the left spread

Pricer<-runif(600,min=5000,max=8000) simulating the right spread

Dtt<-cbind(Price,Pricel,Pricer) binding the central value and the spreads

Dtt (non symmetric)

Dttt<-as.data.frame(Dtt)

Dttt

head(Dttt,7)

F4<-cbind(Dttt,Lot.area,Total.basement.sf,Garage.area)

F4

head(F4,7)

F5<-fuzzylm(Price Lot.area+Total.basement.sf+Garage.area,data=F4,method="flar",fuzzy.left.y="Pricel",fuzzy.right.y

= "Pricer")

F5

Fitting by the use of each independent variable in FLR

using fuzzified spreads by the error method

Lot Area

A1<-fuzzylm(Price Lot.area,data=D1,method="PLRLS")

A1

plot(A1,res=30,"lightblue",main="")

TEF(A1)

GOF(A1)

summary(A1)
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Flar

A4<-cbind(Dttt,Lot.area)

head(A4,5)

A5<-fuzzylm(Price Lot.area,data=A4,method="flar",fuzzy.left.y="Pricel",fuzzy.right.y = "Pricer")

A5

plot(A5,res=30,col="orange",main="")

summary(A5)

plr

A6<-cbind(F1a,Lot.area)

head(A6,6)

A7<-fuzzylm(Price Lot.area,data=A6,method="plr",fuzzy.left.y="Al")

A7

plot(A7,res=30,col="lightblue",main="")

GOF(A7)

TEF(A7)

summary(A7)

a7<-fuzzylm(Price Lot.area,data=A6,method="flar",fuzzy.left.y="Al",fuzzy.right.y ="Ar" )

a7

abline(coef(a7)[, 1], col = "red")

abline(coef(a7)[, 2], col = "red", lty = 2)

abline(coef(a7)[, 3], col ="red", lty = 2)

GOF(a7)

TEF(a7)

summary(a7)
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