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ABSTRACT

Severe Acute Respiratory Syndrome is the primary cause of the pandemic coronavirus
disease. The first case was reported in Wuhan, China, on 30" December, 2019 with
the first case on 13"* March, 2020 in Kenya. This contagious disease has become a
global issue because it has resulted in millions of deaths, economic disruption leading
to loss of employment and economic instability. This study therefore aimed at mod-
elling daily COVID-19 cases in Kenya, using an Autoregressive Integrated Moving
Average (ARIMA) model and a Seasonal Autoregressive Integrated Moving Average
(SARIMA) model. The specific objectives were: to fit an Autoregressive Integrated
Moving Average (ARIMA) model, to fit a SARIMA model, to validate the model and
to determine the forecast of COVID-19 cases. The World Health Organization was
used as the source of secondary data dating from 13** March, 2020 to 30" April,
2023. These data was analyzed using R software. The training data was found to
be non-stationary using a test known as Augmented Dickey Fuller, and it was differ-
enced seasonally to make it stationary. The methodology used to fit the models was
Box-Jenkins which uses the least AIC and BIC as its fitting criteria. The data revealed
weekly seasonality hence invalidating the ARIMA model. SARIMA model was fitted
and model validation using test data was done. The model with the least forecast errors
was selected. The SARIMA(1,0,1)(2,1,2); was selected with the least AIC = 2082.5,
MAE =2.9867, RMSE = 4.5815. Using the model, a ninety days forecast into the fu-
ture was generated based on daily COVID-19 data. These forecasts will greatly create
awareness of the trend and seasonality of this disease and therefore can be very useful
to the health care providers as well as the government for purpose of planning, policy
formulation, evaluation and resource allocation. This study recommends a compara-
tive study on Bayesian SARIMA and SARIMA model to be perfomed, consideration
of the possible change in probabilistic structures of the data and fitting of the BATS
and TBATS models to the data.
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CHAPTER ONE

INTRODUCTION

1.1 Overview

This chapter outlines the project background, the statement of the problem, the main

and specific objectives of the study, scope and, significance of the study.

1.2 Background of the study

1.2.1 COVID-19

On 11" February, 2020, the term COVID-19 was coined by WHO to refer to the
coronavirus disease. It is a contagious disease caused by a Severe Acute Respiratory
Syndrome Coronavirus 2 known as the SARS-CoV-2 virus. This contagious virus is
known to come from the large family of coronavirus (CoVs).

The International Committee on Virus Taxonomy adopted the name SARS-CoV-2 af-
ter the genetically related SARS-CoV. WHO uses COVID-19 to refer to SARS-CoV-2
to avoid confusion with the disease SARS. Polymerase Chain Reaction (PCR) reverse
transcriptase is the test used to check whether the virus is present in a host. Minimal
to moderate symptoms, and full recovery with zero treatment is what most infected
people experience. However, there are individuals who need immediate medical con-

sultation because of severe symptoms. Demorgraphic differences and pre-existing con-



ditions have been the biggest risk factors, with individuals of advanced age having a
higher chance of developing this illness. Although, any other individual can be in-
fected with COVID-19 despite their age. Despite the fact that it can take upto fourteen
days for an individual to be virus infected, symptoms can emerge within five to six
days (Lima et al., 2020).

Recurrent moderate signs and symptoms include coughing and high fever, exhaustion,
and loss or reduced taste/smell. Symptoms can be mild in the form of; sore throat,
body pains and aches, headaches or diarrhoea, a skin rash, fingers or toes discoloration
and red eyes or eye irritation (Struyf et al., 2022)). Patients with severe symptoms like
breath shortness, speech or mobility loss and chest pain are advised to immediately
consult a doctor. The constant mutation of SARS-CoV-2 is a fact that cannot be dis-
puted. Since the start of the pandemic, a number of notable variants have emerged
which are, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2) and Omi-
cron (B.1.1.529) (Duong, 2021).

The contagious nature of this disease makes it spreadable through breathing in or by
mouth, nose or eye contact after touching an infected surface (Jayaweera et al., 2020).
This virus is transmitted more rapidly in open spaces and windy conditions (Coskun e?

al.,2021)).

1.2.2 COVID-19 Vaccines

Even though the process of creating and manufacturing vaccines is laborious and time-
devouring, several vaccines have been developed against this virus. To prevent virus
infection, vaccines act like conventions which are typically administered to groups
of healthy individuals, and not to unhealthy individuals to aid in their recovery. The
types of vaccines that have been used are AstraZeneca, Pfizer-bioNTech, Johnson and
Johnson, Moderna and Sinopharm. The post-authorization protection profiles of the
COVID-19 vaccines have not revealed any indications of unexpected negative or harm-

ful effects (Al Khames Aga et al. [2021). Being well informed with proper prior infor-



mation about the virus, its modes of transmission, treatment and diagnostic measures
is the best strategy to stay safe from it and slow down the infection rate.

Kenya received the first batch of the Atrazeneca vaccine on 3"¢ March, 2021 and there-
after administration of the COVID-19 vaccine began with a view to mitigate the spread

of the virus thereby protecting Kenyan population.

1.2.3 Time Series Data and Models

Data about confirmed cases was usually collected and recorded on a daily basis per
country and the information was shared to the World Health Organization. This data
was then made available for researchers to analyze and find its characteristics as sec-
ondary data (Vartanian, 2010). According to|Anderson| (2011)), time series refers to a
variable defined as values that follow a sequence which is ordered based on intervals
of time which are equally spaced. This time series data which also known as time-
stamped data according to Naqvi et al., (2017) can either be stationary with no mean
and variance systematic changes or non-stationary. For time-stamped data to be non-
stationary, it can be cyclic, seasonal, or contain a trend. The components can appear
together. Time series models are usually fitted to data recorded over a period of time.

The following are some models that are usually fitted and used for analysis:
i AR(p) model is a union of previous observations together with an error term.

ii. MA(q) model is a merger of present and past/previous values of the random

error term.

iii. ARMA(p,q) model is an amalgamation of two models, AR and MA. It uses

previously identified values alongside errors as the basis for future predictions.

iv ARIMA(p,d,q) When using non-stationary data, differencing is done to make
the data stationary which results to an ARIMA model. The number of times data

is differenced is represented by d in the model.



SARIMA is the preferred model to be fitted when data exhibits seasonality. SARIMA
shows a spike at lag s in the ACF, where s is the period of seasonality. Time-stamped
models are commonly applied in business, economics and finance. Time-stamped data
models are used to perform analysis and generate possible predictions into the future
(Nagvi et al.,|2017). Box-Jenkins methodology is the commonly used approach to gen-
erate these time series models from available data (Dritsakis & Klazoglou, 2018]). This
methodology is best used for time indexed historical data collected over a vast period
of time (Ho et al.,2002). ARIMA model has been fitted by Samson et al., (2020) and
Swain et al., (2020) among many researchers for different aims or objectives. After
analysis of time-stamped data and fitting of the model, forecasting is done. This is sim-
ply predicting or estimating future occurrences of COVID-19 infections based on the
accessible historical data. Researchers have fitted most of these models to the COVID-
19 data and generated forecasts. In the field of economics, SARIMA has widely been
applied in forecasting, however, COVID-19 infections in Kenya has not been widely

looked into.



1.3 Statement of the Problem

Globally, the new coronavirus (COVID-19 pandemic) continues to be a serious issue
that impacts all facets of human endeavours. It is one of the most dangerous diseases
to world public health, posing an unsettling scenario with more than six million deaths.
The measures that were put in place to control its spread include lockdown, travel bans,
gathering bans, and social isolation. These measures have had a huge negative impact
on people worldwide for about two years. As a result, millions of people fell into ex-
treme poverty. One of the SDG’s is good health and well being and the amount of time
estimated to achieve it has been elongated due to the sudden hit of this pandemic. One
of the Big 4 agenda like Affordable healthcare and most of the other SDG’s like no
poverty and zero hunger and were also indirectly affected by the effects of this pan-
demic for example loss of employment. In previous studies, most researchers have
analyzed a short COVID-19 dataset then forecasted the disease cases using ARIMA
models in Kenya. Use of a long dataset increases the possibility of exploration, ac-
curate results and identification of a seasonal component. However, data over a long
period of time has not been analyzed using both ARIMA and SARIMA models in
Kenya. The SARIMA model is a useful methodology for analyzing and forecasting
daily COVID-19 cases in Kenya because it allows for the incorporation of lengthy data
with seasonality. The availability of this long dataset allowed for the analysis and fore-
casting of COVID-19 using ARIMA and SARIMA models. Due to this reason and the
continued reported COVID-19 infections, there was therefore a need for the Kenyan
government to execute preparedness and ensure that sufficient resources were made
available to combat the incidence of COVID-19. This research aimed at developing
ARIMA and SARIMA models using recorded cases from 14 March, 2020 to 30**

April, 2023 in Kenya and then forecast for 90 days into the future.



1.4 Research Objectives

1.4.1 Main Objective

The aim of this research was to model the daily COVID-19 cases in Kenya from 14"

March, 2020 to 30" April, 2023 using ARIMA and SARIMA models.

1.4.2 Specific Objectives

The specific objectives of this research were;
1. To fit an ARIMA model to the daily COVID-19 cases in Kenya.
ii. To fit a SARIMA model to the daily COVID-19 cases in Kenya.
iii. To validate the SARIMA model using forecast errors.

iv. To determine forecast cases for 90 days using the SARIMA model.

1.5 Research questions
The research questions of this study were,
i. What was the best ARIMA model to fit COVID-19 data?
1. What was the best SARIMA model to fit COVID-19 data?
iii. How valid was the selected SARIMA model?

iv. What were the generated forecast cases using a SARIMA model?



1.6 Scope of the study

This study aimed at fitting an ARIMA model, then fitting a SARIMA model to daily
cases of COVID-19 to perform forecasting. This was because of possible seasonality
in the data. The data that was analysed comprised of the daily number of COVID-19

infections at the beginning of March 2020 to July 2023 in Kenya.

1.7 Significance of the study

The relevance of this research in forecasting new COVID-19 cases is demonstrated in
its applicability to make predictions of cases for any future pandemics. This will then
translate to creation of preparedness for future pandemics.

The Kenyan government and the stakeholders can use this research to examine the
possible disease burden during the pandemic which can affect the country’s capability

to achieve SDG’s and Affordable housing in the Big 4 agenda on the set time frame.

1.8 Limitations of the study

Unreported cases steming from negligence or inadequate testing, the ommission of in-
teventions measures such as vaccinations, were some of the limitations of this study.
Due to this, the focus was on the officially reported COVID-19 infections. Also, pos-
sible changes in probabilistic structures of the data for the period before and after

restrictions were lifted was not considered.



CHAPTER TWO

LITERATURE REVIEW

2.1 Introduction

This chapter highlights a comprehensive literature review of previous studies. This
includes studies of fitting time-stamped data models such as ARIMA and SARIMA.

Further, the research gap was identified.

2.2 Theoretical review

2.2.1 ARIMA model

Samson et al., (2020) conducted a research using a COVID-19 forecasting model in
Nigeria. Using the confirmed COVID-19 cases, the study built an ARIMA model using
the Box-Jenkins as the prediction methodology. On the differenced log-transformed
data, stationarity was tested using ADF test. Using R? and normalized BIC, a compar-
ison was performed. A two weeks forecast was generated by ARIMA (2,1,0) whose
results had shown better performance than the other proposed models. Lockdown re-
laxation would lead to an increase in COVID-19 cases as indicated by the forecasts.
With a sustained increase of these cases, a collapse of the health system would be
iminent. Therefore, the Nigerian government needed to retain COVID-19 preventive

measures.



Swain et al., (2020 showcased how deaths and confirmed cases of COVID-19 could
be predicted using an ARIMA model following a surge of cases reported in Odisha
and India. An uptrend was predicted by the model for the two weeks that followed,
and this was consistent with the actual recorded cases within the two weeks. Using the
findings, the government was able to formulate pandemic preparedness policies for the
health care systems which would ensure better preparation of the medical professions
in combatting pandemics.

Khan & Guptal (2020) in their forecasts of Indian cases of COVID-19 made use of
NAR and ARIMA models using a 50 days forecasting period. The researchers used
data from the Ministry of Health and Family Welfare (MoHFW) to first fit an ARIMA
model followed by a NAR and then compared the accuracy of the predictions from the
models. From the researchers results, the predicted cases showed an uptrend which
was consistent with the actual cases. After achieving the highest R? and least BIC
values, ARIMA (1,1,1) was found to be appropriate model.

Bhangu et al., (2021) analysed confirmed monthly cases using machine learning algo-
rithms, which helped to reveal seasonality and trend of the data containing COVID-19
cases. A two weeks forecast using ARIMA and SARIMAX predicted the trend in the
spread of COVID-19 which supported health-care services. Suitability of the model
was established using a low MAE. Despite the existence of non stationarity and un-
certainty in the data, the results showed a rising trend in the number of cases unless
disease containerization measures were undertaken. Although the researchers used
ARIMA and SARIMAX models, the data used was over a short period of time.
Chakraborty et al., (2022), used empirical review to evaluate several forecasting mod-
els which worked on the short term, to predict daily cases of COVID-19 for different
nations. Through a practicle study focusing on predicting accuracy, evidence was pro-
vided showing how the pandemic cases cannot be accurately predicted. Despite this,
the generated predictions were still useful for healthcare resources allocation. This

research suggested that having less data and insufficiet evidence made forecasting and



nowcasting a challenge.

Perone| (2021) fitted (ARIMA) model, ETS, NNAR, Box—Cox transformation done
through trigonometric exponential smoothing state space, TBATS. All of their feasible
hybrid combination were analyzed. This was done with an aim to predict the num-
ber of hospitalized patients exhibiting mild symptoms and critical conditions during
COVID-19’s second wave in Italy. The website of the Italian Health Ministry, was
used as the source of the analyzed data. Outcome of the analysis showed that hybrid
combination models were more efficient in correcting the linear, non - linear, and sea-
sonal disease outbreak patterns. Following the projections that COVID-19 hospitalized
patients numbers would exponentially increase, the number of ICU beds required were
twice as much and three times for the next ten and twenty days respectively.

These forecasts were proportional to the reported, indicating that hybrid models may
enable the judgment of public health authorities, particularly in the short term.
Maurice et al., (2021) carried out an ARIMA model research study to forecast the
Kenyan COVID-19 infections collected from the Ministry of Health. The descriptive
statistics and the scatter plot developed a linear relationship between COVID-19 cases.
Using the lease AIC from the least of possible models, ARIMA (0,1,2) emerged as
the best model for forecasting using R software. One hundered and fifty days forecast
were generated using R and they revealed an uptrend in the in the number of infec-
tions but the curve flattened after the constant increase rate. The authors suggested that
the Kenyan citizens should heed to the given guidelines and the government should
promote more widespread testing, quarantine, and provide free face masks and other
protective equipment for medical personel. This research suggested ARIMA model
was the most superior model to predict for the COVID-19 cases. However, the data
used was for a period of eight months hence a need to analyze a more lengthy data.
Dehesh et al., (2020) fitted an ARIMA model from Jan 2020 to March 2020 COVID-
19 cases in China, Thailand and South Korea. These data was secondary data and

was obtained from John Hopkins University. Choosing the best model for prediction

10



and forecasting was the main aim of this study. Analysis was done using R and Stata
and the forecast results revealed that China and Thailand prevented COVID-19 from
spreading. Dehesh et al., (2020) suggested for other countries to study the measures
that these countries took. The study used short data length and therefore could not

identify seasonality. The research did not have any conclusive forecasts either.

2.2.2 SEIR MODEL

Wambua et al., (2022)) determined the indirect effects of COVID-19 pandemic using
longitudinal analysis. This was perfomed by analyzing the immunization and outpa-
tient care data in Kenya from Kenya’s health information system. An accuracy analysis
was performed to test the validity of the estimates that were made to account for data
that was missing. In April 2020, the total number of outpatient visits experienced
significant declines. The predictions revealed a recuperation of the health services to
normal by 21! March as the effects of COVID-19 took a turnaround. A conclusion
was made that a dynamic and active treatment was required to reverse the effects. This
was because of an indirect implication of health services by COVID-19.

Kiarie et al., (2022]) created an SEIR model that has four elements to simulate how in-
dividuals interact with each other in a dynamic manner under four different conditions:
susceptible (S), exposed (E), infected (I), and recovered (R). However, forecasting was
performed using ARIMA model. During the fourth wave, peak daily cases were ob-
served to be the lowest. According to the sixty days prognostications, there was an
upward trend in the COVID-19 cases. 26" October, 2021 being the peak of the fourth
wave, it had four hundred and fifty four(454) new infections and forty(40) people who
required immediate attention and sixteen(16) ICU cases due to severity. The results
of this analysis were essential for drafting the containment measures and strategies of
the pandemic. It was also relevant for enhancing the healthcare workers readiness and

preparedness alongside the policymakers.

11



Odhiambo et al., (2020) wanted to check whether the relationship of the risk com-
ponents was linear. Most statistical models were used to model and forecast but there
were no mathematical models for modelling and prediction purposes. Odhiambo et al.,
(2020) therefore focused on applying a generalized linear regression to achieve these
gaps. This was perfomed to quench the government’s desire to know about the speed
of COVID-19 rate of transmission. Additionally, it would assist in effective reception
and care. This study aimed at using the compound Poisson to perform modelling of
the of Kenyan COVID-19 cases and forecasting. The process’s model parameters were
generated from the daily contacts and number flights with reported and confirmed in-
fections.

Ultimately, this research advised the government of Kenya to distribute enough testing
kits all over the country as they put in more effort to improve public awareness. The
Kenyan government was also advised to increase the number of quarantine centers,

hospital beds and well trained medical personnel with proper protective gear.

2.2.3 SARIMA model

Tan et al., (2022) aimed at analyzing COVID-19 cases recorded on a daily basis in
Malaysia from January 2020 to September 2021. This was because of the rise in
COVID-19 cases in the country raising a need to forecast for curbing measures to
be put in place. Analysed data was secondary daily number of cases obtained from the
Ministry of Health. The analysis was carried out using SPSS but the test for station-
arity was done using R language. Differencing was carried out twice to make the data
stationary. A testing and training set were generated from the data set. The selection of
the optimum SARIMA model was based on the least Root Mean Squared Error, Mean
Absolute Error and Bayesian Information Criterion. Validation of the optimum model
was performed using the Ljung-Box test. Results of the twenty eight (28) conducted
forecasts revealed that cases of COVID-19 were going down. Based on the errors aris-

ing during forecasting, this research concluded that the SARIMA models can make

12



accurate forecasts. The resercher recommended the study to be carried out with more
data points.

Feroze| (2020) analyzed COVID-19 data of four months for five countries using the
ARIMA model and then forecasted for thirty(30) days. The analysis was done to see
the effects of lockdown in the five countries in different continents. The resulting fore-
casts of this study revealed an increasing trend in the COVID-19 cases alongside the
resultant deaths during the lockdown measures easing period. Feroze| (2020) used a
short duration dataset and did not explore the SARIMA model.

As South Africa was trying to halt Malaria cases, Ebhuoma et al., (2018) identified a
need to find a goodmodel to forecast for the Malaria cases. This would play a big role
in the control of Malaria cases. This study aimed at fitting the best SARIMA model
to Malaria cases and use it to forecast. Testing and training sets were generated from
the data set. The Box-Jenkins methodology was used for training and selection of
the model. Forecasting was done using the model selected which was later validated
against actual data. The model’s forecasts closely fitted the actual cases. Ebhuoma
et al., (2018) then concluded that the model was good to be used to forecast for the
Malaria cases. This would in return help in coming up with measures to curb the dis-
ease.

Hu et al., (2007 wanted to develop a forecasting model and a model that could ex-
amine the relationship between temperature and cryptosporidiosis transmission. An-
alyzed data was secondary and it ranged from 1% January, 1996 to 31! December,
2004 for comparison. Generated results from both models highlighted the relation-
ship occurring between weather fluctuation (temperature to be specific) and the rate of
transmission of cryptosporidiosis. The least RMSE and AIC values were used as the
criteria for selecting the best SARIMA model. The residuals from the model selected
were eqivalent to the residuals assumptions from the model of best fit model.
Valipour (20135)) evaluated the performance of two models, SARIMA and ARIMA on

the forecasting relative errors. The long-term runoff data used was secondary data
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from 1901 to 2011 from all states stations in the United States of America. Analysis
was done in two stages using two partitions of the data, first one was average runoff
for each state and the second one was average runoff for all over the country. AIC
values were used as the model selection criteria with parameter estimation carried out
using the MINITAB software. The generated indicated an increase in temperature and
a decreasing trend in rainfall. The SARIMA model produced more accurate forecasts
compared to the ARIMA model with a relative error, RE < 5%. Comparing the two
models, the research concluded that the SARIMA model performs better in forecast-
ing. Although a hybrid SARIMA has been recommended, a SARIMA model had not
been fitted to the daily COVID-19 cases in Kenya.

Peronel (2022) forecasted for mid term to short term cumulative deaths of COVID-19
in twelve(12) different countries. This research used secondary data from Our World
in Data to fit ARIMA and SARIMA models. The data-set was divided into training and
test data set. The two models both proved that they were more accurate in forecasting
compared to regular simple forecasting models. The SARIMA model performed bet-
ter than the ARIMA model revealing a seasonal pattern in the data. This was deduced
from the MAE and RMSE, where SARIMA model had the least values. The SARIMA
model was then validated using data from 21°¢ August to 19" Sept 2020 and it was
found to be valid. Perone| (2022) therefore concluded that SARIMA model was good
for forecasting. This has however not been done in Kenya using more data points for

COVID-19 cases.

2.3 Research gap

Most researchers in the previous studies, fitted ARIMA and SARIMA models to few
COVID-19 data points. There was few researches that had been done to forecast the
cases of COVID-19 using the ARIMA and SARIMA models in kenya. Due to the

short period of data consideration, it was not possible to identify seasonality. With
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availability of more data points, there was therefore a need to fit ARIMA and SARIMA
models incorporating the period: after the restrictions were lifted. This was because,
arguably, the longer a time series is, the more accurate are the results of analysis.

This research therefore aimed at filling this gaps by using ARIMA and SARIMA mod-
els on a wider time frame data that would allow testing for model accuracy, test sea-

sonality and forecast for COVID-19 cases in Kenya.
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CHAPTER THREE

METHODOLOGY

3.1 Introduction

This chapter mentions the target population as well as the source of the data. Data
analysis method is clearly outlined where the model to be fitted is given. The related

measures are derived as well as the procedure for model checking and validation.

3.2 Fitting ARIMA and SARIMA Models

The target population is inclusive of all positive COVID-19 infections in Kenya. This
secondary data is sourced from the WHO’s website and is analysed using R-Studio
software. As part of the analysis of the time-stamped data, the first and foremost step is
to plot data just as it was, generating a timeseries plot which is important in description
of data (Moskovitch & Shahar, |2015)). By observation, the plot helps identify features
such as trend, seasonality, outliers and discontinuity in the data. The time series plot is
also accompanied by some descriptive statistical measures to ensure that the structure
of the data used in this research is well understood.

Trend and seasonality components could be found in time series data. Trend (7})
is a gradual upward or downward movements due to factors that affect the mean of
the series (Bee Dagum & Bianconcini, 2016)). Seasonal variation (S;) is a periodic

movement in a series with a regularity of less than one year. It is possible to use

16



a multipicative or additive model to combine and explain the previously mentioned
components (Coghlan, 2018]). Additive model is used to explain components that do
not depend on time, they are roughly constant over time. Additive model is explained

by the model given by Equation|3.2.1

Xe =T+ S+ Ry (3.2.1)

X; = Trend 4+ Seasonal + Random

In instances where the change in seasonality is directly proportional to the change in
time, the multiplicative model may be an appropriate choice (Bhangu et al., 2021). A

multiplicative model formular is given by Equation[3.2.2]

Xt = E * St * Rt (322)

X; = Trend * Seasonal x Random

The data can be transformed to allow description using an additive model.

The following are the time series models that were fitted to the data.

3.2.1 White Noise

It is a collection of random variables {e;} which are usually uncorrelated with zero
mean, and a finite variance (Bhangu et al., 2021). This is a purely random process
with no memory.

The mean, variance and covariance of white noise are given as 0, o2 and 0 respectively.
White noise is not predictable because it has no memory hence very important in de-
termining whether the model well fits the data. To test for white noise, the researcher
used the visual tests, autocorrelation and normality test’s or checking the autocorrela-

tion function (ACF) of the errors using the correlogram.
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3.2.2 Moving Average (MA) Model

The Moving Average process, which is commonly referred to as the MA model, is a
basic time-stamped data model which is finitely stationary and is mostly used to model
univariate time series data. Linearly combining past and present values of the error
term of a white noise. A process X; is said to be a moving average process of order ¢

denoted by MA(q) if

Xi = Coer + Crer—1 + Qe + ... + (414 (3.2.3)

where e¢; ~ N(0, 0?)
t=1,2.3,...n

Equation [3.2.3|can be simply written as;
q
Xi=> (e (3.2.4)
=0
where (; are constants or parameters to be determined.

3.2.3 Autoregressive (AR) Model

An autoregressive model is where the current observation can be written as linear com-
bination of its p past observations together with the white noise (error terms). It is use-
ful for prediction and inferencing. A process { X} is said to an auto-regressive process

of order p denoted by AR(P) if

Xt = 51Xt—1 + 52Xt—2 + ...+ 6pXt—p + €t

p
= 6 Xk +e (3.2.5)

k=1

where 0, are the parameters, p is the observation lag number and,
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€ NN(O,O'2)

An AR model is not always stationary, it depends on the value of 6.

3.2.4 Autoregressive Moving Average (ARMA) Model

The AR combined with the MA model produces the ARMA model. Both the past
observations and unexpected errors are considered. It was majorly introduced because
it reduces the number of parameters used and it is defined by ARMA(p, ¢) with p and
q defined as the orders of the AR and MA models respectively (B. Choti, [2012). It can

be written as

Xt = (51th1 —+ (52th2 + ...+ 5pXt7p + e + (1et,1 -+ Cgetfg + ...+ qut,q (326)

p q
Xp=> Xin+ Y (ejte (3.2.7)
k=1 j=1

0 = AR’s model parameter/coefficients,

¢ = MA’s model parameter/coefficients,

p, q = order of AR and MA respectively,

e; = error term or white noise, ¢; ~ N (0, 02).

An ARMA is a stationary process hence the mean and variance are constants and it
does not require differencing.

Rewriting Equation [3.2.6] as;
Xi =01 Xi1 =00 X0 — . =0, X4 p = Crep—1 + Goepo + oo+ (geryg
One can use the backward shift operator to obtain Equation BiX, =X, ;

[1—6B' —8:B* — ... = 6,B°] Xy = [1 + (B' + B> + ... + (B e,
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©(B)X, = 0(B)e, (3.2.8)

where, p(B) =(1 — Y7 _, 6,B%)

and J(B) =(1 — 3_7_, (; B’) Equation can be simplified to

(3.2.9)

Stationarity of the ARMA model is dependent on the AR model parameters i.e it is

stationary if ¢(B) is stationary.

J(B)
E(X) = mE(et) (3.2.10)
since
er ~ N(0,07)
then
E(X;) =0 (3.2.11)

If ARMA process X; is weakly stationary, then its representation as an infinite moving
average is possible. i.e M A(c0).

If ARMA process X; is invertible, then it can be represented as a infinite autore-
gressive model AR(co). Both the autocorrelation and partial autocorrelations of an
ARMA(p, q) tails of or approaches zero as lag h increases. This makes them not infor-
mative when choosing the order of an ARMA(p, q).

According to (Gebretensae & Asmelash (2021), the extended autocorrelation can be

used for the order selection.
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3.2.5 Stationarity

The lack of periodic variations, mean and variance systematic changes are the charac-
teristics that determine stationarity of time-stamped data (Dickey, [2015)). On the other
hand, non stationarity is characterized by the existence of seasonal, trend, cyclic com-
ponents or the combination of these components. The types of stationarity are strict
and weak stationarity. Weak stationarity, also known as 2"¢ order stationarity occurs
when the mean and variance don’t vary with time i.e F(X;) and var(X,) are constants
(Brockwell & Davis|, 2009).

The covariance function cov (X}, X;,,) is independent of time but dependent on lag h.
To check for the stationarity of the time-stamped data, the autocorrelation function(ACF)
can be used. Time-stamped data makes a good prediction, if it is stationary.

To test for stationarity:One way to check for stationarity is by observing the time plot
and the correlogram (Dickey, 2015). Time plots show horizontal upward trend with
the variance being a constant. Then check how time ¢ and time ¢ + h are correlated. If
there is correlation then there will be dependence between the observations. To have
stationarity, differencing can be performed on non-stationary time-stamped data. The
following methods were used to check for stationarity;

Unit root test: This is a test or a check for data stationarity (Pesaran, 2007). The exis-
tence of a unit root for the time-stamped data is the precondition of the null hypothesis
of non-stationarity. The alternative hypothesis is that of the time-stamped data be-
ing stationary. The Dickey-Fuller and Augmented Dickey-Fuller test are examples of
the unit root test. Dickey-Fuller Test and Augmented Dickey-Fuller Test (ADF): The
Dickey-Fuller test checks for the exsistence of a unit root in data to determine its sta-
tionarity. Time series may be more complex because the error term might not be white
noise, hence the development of the Augmented Dickey-Fuller (Mushtaq, 2011). A
series of differencing values are added to the DF test to evolve it to ADF.

The ADF is simply a Dickey-Fuller test augmented with lags of dependent variables. It
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is a statistical significance test based on hypothesis testing. A test statistic is computed
resulting to a p — value whose inference reveals whether there is stationarity or not.
Hypothesis:

Hj : Data is not stationary

H, : Data is stationary

Rejection of the null hypothesis is ensured by this test as it assumes non-stationarity
of the data. The decision criteria involves comparing p — value and stated value of
significance. The null hypothesis is rejected and a conclusion reached that the process

is stationary if the stated level of significance is greater than the resulting p — value.

3.2.6 Differencing

This is the conversion process non-stationary time series data to be stationary. It is
done by subtracting one value from another successive value for the minimum number
of times until stationarity is achieved. One can difference as many times as possible as
long as stationarity is yet to be achieved. According to|Moh’dMussa & Saxena|(2018)),
when differencing is used to account for trend it is known as regular differencing and
when it is used to account for seasonality it is known as seasonal differencing.

Let X, denote a time series, differencing is carried out as follows, The 1% differences
are;

V(I)Xt =X, — Xy

wheret =1,2,3,...,n

The difference computed using backward shift operator B

vWX, = (1 - B)Xt (3.2.12)

where, B’ X, = Xi—j
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The second differences may be computed from the 1% differences

vOX = vX, - vWX (3.2.13)

The general differencing expresssion is as follows;

TmX, = vmIX, — oM X, (3.2.14)

where, 5/ denotes the difference

m = 1,2, 3, ... is the order of the difference (Moh’dMussa & Saxena, 2018)).

3.2.7 Autoregressive Integrated Moving Average (ARIMA) Model

Removing parameters causing non-stationarity involves performing differencing (Zhang,
2018). An ARMA model when subjected to differencing becomes an ARIMA (p, d, q)
model. (p,d,q) is the order of the AR, differencing and MA model. (Prabhakaran,
2019) ARIMA (p, d, ¢) model is used on the non-seasonal data to predict future values
based on past observations only.

The model is

Xt = C+ 51Xt—1 + (SQXt_Q + + 5pXt—p + Ct + glet_l + Cget_Q + + qut—q (3215)

The basic time series model is the ARIMA(1,1,1).

The general ARIMA model is of the form, (Zhang, |2018]).

Wt =c+ 51Wt_1 + 52Wt_2 + ...+ 5th_p +er+ Clet_l + Cget_g... + qut—q (3216)

where W, = 79 X, is the difference
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B]Xt — Xt—j

o(B)Wy = 9(B)ey (3.2.17)
¢(B) v\ X, = 9(B)e, (3.2.18)
but
v@X, = (1- B)X, (3.2.19)
Therefore
©(B)(1 — B)X, = 9(B)e, (3.2.20)

Roots in the unit circle which are in the AR operator makes ARIMA a non-stationary

process of order (p, d, q).

3.2.8 Seasonal Autoregressive Integrated Moving Average (SARIMA)

Model

Since ARIMA does not support data with seasonality, it is not fit for analyzing time-
stamped data that exhibits seasonality. This drawback makes the SARIMA model
appropriate as it incorporates seasonality. A seasonal pattern is a periodic movement
with a regular pattern of less than one year or within a year. The model is denoted
by SARIMA (p,d, q)(P, D,Q)s. Using the backward shift operator, it is written as

follows
(1 —,B)(1 —®pB*)(1 — B) (1 - B*)’X, = (1 +9,B)(1 + 6gB*)e; (3.2.21)
or
©(B)®(B)(1 — B*)P(1 — B)‘X, = 9(B)O(B*)e, (3.2.22)

where,

© and ¢ are the model parameters

24



B is the backward shift operator

p is the order of AR terms

d is the number of differencing

q is the order of MA terms

P is the order of seasonal AR terms

D is the number of seasonal differencing

( is the order of seasonal MA terms

s = length of the season

Making [X;] the subject of equation one obtains,

9(B)O(B*)e;

M= 3B e(B) (1 - B (1 B)

(3.2.23)

Example of ARIMA(1,1,1)(1, 1, 1), is yearly data with quarterly patterns, where s =

4 is the order of seasonality.
= (1-6B)(1-6BY1-B)(1-BYX,=(1+G)1+(BY,  (3.2.24)
The SARIMA model’s order can be obtained using the ACF and PACF plots according

to (Koyuncu et al.,2021). For example, For yearly data with an annual pattern, s = 12

i ARIMA(0,0,0)(0,0,1);2 ACF-One peak at lag 12 with all others with the others

not significant PACF-Slow decay in the seasonal lags(12,24,36,...)

ii ARIMA(0,0,0)(1,0,0);2 ACF-Slow decay on the seasonal lags PACF-One sig-

nificant peak at lag 12

The Box-Jenkins methodology was employed to fit the time series models.

25



3.3 Box-Jenkins Methodology

This method was used for model identification, estimation and prediction (Devi et al.,

2013)). The procedure is as follows;

3.3.1 Model Identification

The first step was Data Preparation: A time series plot was plotted and data transfor-
mation using offset logarithm was performed to ensure stability of the variance. Offset
log transformation occurs when a constant is added to the data points before applying
the log transformation (William & Wei, |2006). Usually perfomed on data that contains
many zero values. Test for stationarity was done and differencing was carried out ac-
cordingly.

The second step is Model Selection: During this stage, plots of the ACF and PACF
were used for the identication of appropriate model’s orders. Stated here were some
scenarios of the ACF plot that were applied in the identification of ARIMA and SARIMA

model’s parameters (Dritsakis & Klazoglou, 2018).

1 Very slow or no decay in the ACF : This was a suggestion that the data was

non-stationary and has long-range dependency.

i1 Exponential slow decay to zero in the ACF : This suggested an AR model and

therefore, the PACF plot was used to identify the order of p.

111 When there was one or more spikes but the other spikes were not significant in
the ACF: Suggested the MA model of order ¢, where ¢ was the spike that the
ACEF plot cut off from.

iv Slow decay that started after a few lags in the ACF and PACF : Implied the

possibility of an ARMA model.
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v No significant spikes at all in the ACF: Suggested a White noise or no autocor-

relation (Majorly used when testing the residuals).

vi Spikes at multiples of one lag in ACF and PACF plot: This implied the SARIMA

model hence the orders P and () are taken based on the spikes at fixed intervals.

The AIC and BIC were used for the selection of the best model. This depended on the
quality of the model which was estimated by selecting the least values of the Akaike
Information Criterion (AIC) and the Bayesian Information Criterion (BIC) (Morley et
al.,2018).

AIC is efficient with a minimax property and it assumes normality (Vrieze, [2012).
It is a means of comparative model quality estimation from a given a set of models.
Parsimony and goodness of fit is balanced by AIC while ensuring that the selected
model is generalizable (Cavanaugh & Neath, 2019). Let L be the maximum likelihood
estimator and k£ be the number parameter estimates of the model, then the AIC of the

model is calculated as follows,

AIC = —2logL + 2k (3.3.1)

Selection of the best model was done by picking the least value of AIC.

BIC was introduced by Schwarz| (1978)) for independent and identically distributed ob-
servations and linear models whose likelihood was assumed to be from the exponential
family.

It seeks to find the perfect model by strictly penalizing models with many parameters.
It can be written as

BIC = —2logL + kIn(n) (3.3.2)

where L is the likelihood function
k =total parameters

n =total observations
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BIC is majorly used in finite models where the best model selection follows the small-
est BIC value (Neath & Cavanaugh, 2012)). However, BIC is considered as less efficient

for large data sets (I. So & AM, 2009).

3.3.2 Estimation and testing

After choosing an appropriate SARIMA model for the daily COVID-19 data, estima-
tion of parameter values was done using the Maximum Likelihood Estimator method
(Perone, 2021). This was because it was the most suitable and feasible method as
there are error terms which can be classified as random components emerging from
measurement errors. Therefore the likelihood could be easily obtained. Considering
the daily COVID-19 cases, for example, =1, xo, x3, ...x,, are from a density function

f(x,9) where 1) was the unknown parameter. The likelihood function was given by;

L(¥) = Hf(xi,ﬁ) (3.3.3)

To determine the MLE of ¢, the likelihood function was differentiated with respect to
¥ and equated to zero,
ie

—= =0 (3.34)

For many parameters, say up to k, then the likelihood function contains k& parameters
e
n

L(V1, 92,03, ...,9%) = [ [ f(2i, 91,92, U5, ..., 0%) (3.3.5)

i=1
To determine the MLE of ,, ¥, V5, ..., ¥y, differentiate the likelihood function with

respect to vy, U, ..., U, respectively while equating to zero for maximization.
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3.3.3 Diagnostic checking

In this step, there was checking and testing whether the model was adequate and valid
using residual diagnostics (Pagan & Hall, 1983)). A histogram and the ACF of the
residuals were plotted and a test for autocorrelation was performed using the Ljung-
Box test. According to [Serra & Rodriguez (2012), to determine the goodness of the
model, autocorrelation of its residuals was tested using the Box-Ljung test. In this test,
if the p-value was greater than the stated level of significance, the no autocorrelation
null hypothesis was not rejected (Marquez et al.,|[2015).

The best picked model should have normally distributed and white noise residuals.

3.3.4 Forecasting

If the best model was found in step three, the model then proceeded to step four and
was used for forecasting. In the case of a model inadequacy in step three(3) for some
reasons, the researcher goes back and repeats the process until a satisfactory model

was found.

3.4 Model validation

At this point, the splitting technique was used to validate the selected models against
the test data set. The models were used in forecasting for the test data set and a com-
parison of the forecasts and the actual data of the test set was carried out. This is known
as forecasting out of the sample. The accuracy of the forecasts was obtained from the
difference between actual cases and their predictions (E. C. Sol [2013)). The method of
Root Mean Squared Error and Mean Absolute Error were used to check the accuracy
of COVID-19 forecasted number of cases because according to|Chai & Draxler|(2014),

they are measured in the same units as the variables.
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MAE and RMSE are calculated using the following formulae,

?:0 |Xi — Xz|

MAE = (3.4.1)

p
P (X — X;)?
RMSE = \/ 2eiza ) (34.2)
b

where,

X;= the true case value

X,= the case prediction

p= the total observed COVID-19 cases

The normalized RMSE was also used to confirm whether the RMSE value was good

enough (Shcherbakov et al., 2013).

RMSE
Normalized RMSE = - — (3.4.3)
Maximum actual value-Minimum actual value

If the normalized RMSE which ranges between 0-1 is closer to 0, the model is a good
fit. The model with the least MAE and RMSE was chosen as the best model and used

for forecasting for ninenty days.

3.5 Forecasting

The best selected model was used in forecasting the future COVID-19 cases.

ARIMA model’s forecasting equation used was given by Equation [3.5.1]
Wt =c+ 51Wt_1 -+ 52Wt_2 + ...+ 5th—p + e+ Clet_l + Cget_z... + qut—q (351)

A prediction about W; where

W, = X; — X, 1s the differenced version of original COVID-19 data
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SARIMA model’s forecasting equation used was given by Equation

9(B)O(B*)e;
(B*)p(B)(1 — B*)P(1 — B)

X, = (3.5.2)

where, X, is the forecast value based on past observations.
BiX, = X;_; where B is the backward shift operator.
¥ and © are the model parameters as defined by Equation [3.2.22
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CHAPTER FOUR

RESULTS AND DISCUSSION

4.1 Introduction

This chapter gives a description and interpretation of the results of COVID-19 data
recorded from 14" March, 2020 to 30" April, 2023. There were 1143 data points.
The data was obtained from the World Health’s Organizations website. R stastistical
software was used for analysis. Graphs and summary statistics were used to illustrate

and interpret the results of analysis.

4.2 Fitting the ARIMA model

Estimation of the ARIMA model yielded the results discussed in this section. Only
80% of the data was used to fit the models as. This percentage was chosen according
to Vrigazova (2021) who suggested splitting data into 20/80. The 20% of the data was
used in model validation which is a very important step when fitting time series models
(LeBaron & Weigend, 1998). According to Baglaeva et al., (2020), models fitted using

splitting generate more accurate results.

4.2.1 Descriptive Statistics

These included a time plot and a histogram of the original time-stamped data decom-

posed data and descriptive statistics.
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Figure 4.1: TimeSeries Plot of COVID-19 cases

Figure [4.1|revealed a high rise of daily COVID-19 cases between December 2021 and
January 2022. This could have been caused by the lifting of restrictions by the Gov-
ernment of Kenya on 215" October, 2021. The freedom to travel and interact during the
December festive season after a long period of lockdowns.

A rise in the number of cases led to the different peaks that indicated a difference in
variances in the data. There were peaks at around July and November 2020, March,
August and December 2021, and in June 2022. The highest peak was in December
2021 from which the trend decreased drastically with the maximum of 3749 COVID-

19 cases recorded on 215" December, 2021. There were six troughs at around Septem-
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ber 2020, February 2021, May 2021, October 2021, March 2022 and August, 2022.
Troughs could have been due to the were due to the measures that were put in place to

curb the spread and reduced travelling.
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Figure 4.2: Histogram of COVID-19 cases

In Figure the values with the highest frequency were (0 — 1000). These were the
cases that had been reported more often. The histogram was right skewed implying
low frequency for cases between 1500 and 4000. Further, the non-normality of the
histogram indicated different variances in the data, which would imply nonstationarity

in the data set.
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Figure 4.3: Histogram of COVID-19 cases per year

Figure [4.3]is slightly skewe to the right. The years 2021 and 2022 recorded the most
number of COVID-19 cases. The disease then appeared to have been contained in the
year 2023. This could have been due to the high numbers of vaccinations or the cases
were no longer being reported. The cases had an increasing trend up until 2022 from

which the cases started decreasing.
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The COVID-19 data was decomposed and the individual time series components iden-

tified. These included trend, seasonal and random components.

Decomposition of additive time series
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Figure 4.4: Decomposed plot of COVID-19 cases

Figure {4.4] showed the individual components of the COVID-19 data. There was an
upward followed by a downward trend in COVID-19 infections. The data exhibited
a seasonal component as seen in Figure [#.4] The data had a random component be-
cause of measurement errors such as false positives and inconsistencies in testing and

reporting.
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Table 4.1: COVID-19 cases descriptive statistics in Kenya for the period 2020-2023

Mean Median Skewness Kurtosis Shapiro-Wilk Test Box-Ljung test
325 136 29393  12.3622 <2.2 x1071¢ <2.2 x1071¢

The average number of COVID-19 cases recorded per day was 325. Half the obser-
vations fell below 136 while half the observations fell above. In Figure [4.2] there was
a positive skewness of 2.9393 and leptokurtosis of 12.3622. The Shapiro Wilk test

16 an indication that normal distribution was not fol-

produced p — value < 2.2exp~
lowed by the data (Razali ef al., 2011). Autocorrelation(dependency) was tested using
Box-Ljung test producing a p —value < .05 which indicated that the data was strongly

correlated.
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Figure 4.5: ACF and PACF of COVID-19 cases

Slow decaying pattern of the ACF plot in Figure 4.5(a) showed that the time series
was not stationary. The slow decay was also an indication of long range dependency
in the recorded COVID-19 cases. The data had significant positive correlations and
therefore the time series data was not random since there were many non-zero spikes

in the ACF plot. From the PACF plot in Figure [4.5(b), the data had a high degree of
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autocorrelation.

Since the data revealed that it had different variances and skewness in Figure §.2]
variance stabilization was performed using offset log transformation where a constant
is added to the cases before applying log to the data with zero data values as suggested
by (William & Wei, 2006). Time plot together with the ACF and PACF plots were

generated from the data set that underwent transformation demonstrated in Figure 4.6
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Figure 4.6: Plots of the offset log-tranformed COVID-19 cases

The slowly decaying ACF plot in Figure 4.6(a) demontrated lack of stationariy. The
significant spikes at lag 7, 14, 21 and 28 indicated that weekly seasonality was present

in the data. This was also observed from the weekly oscillations in the plot.
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Histogram of log(Covid-19 Cases)
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Figure 4.7: Histogram of the offset log transformed COVID-19 cases

The histogram demonstrated that the variance had been stabilized.

4.2.2 Test for stationarity

The ADF stationarity test Mushtaq (2011)) was used as the means of estabilishing the
stationarity of data which further determined whether differencing was needed. From
the results, a p—value of .09376 > .05 was obtained. The null hypothesis of data non-
stationarity was not rejected due to lack of enough evidence at « level of significance.
This led to the conclusion that data was not stationary and therefore differencing was
required. Differencing was done and the mean was constant as shown in Figure [4.8](a).
Figure [4.§[(b) and [4.8(c) showed the ACF and PACF of the log-differenced COVID-19

cases.
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Figure 4.8: Plots of log-transformed COVID-19 cases after regular differencing

ACF plot in Figure[4.8|(b) had significant spikes at lags 1, 2 but cut off at lag 3. ADF test
was carried out again to evaluate the data’s stationarity and the result was a p — value
of .01 the null hypothesis of data non-stationarity was rejected indicating that the data

was stationary after regular differencing.

4.2.3 Developing the ARIMA model

According to Figure 4.§(b) and [4.8(c), the ARIMA orders were determined and the

results shown in Table 4.2
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Table 4.2: Fitting the ARIMA Model

ARIMA Order AIC BIC RMSE
(1,1,1) 1680.07 1694.759 0.5636
(1,1,2) 1675.17 1694.761 0.5617
(2,1,1) 1672.25 1691.837 0.5608
(2,1,2) 1605.70 1630.185 0.5416
(3,1,1) 1668.03 1692.514 0.5590
(3,1,2) 1583.18 1612.558 0.5349

During model selection, ARIMA model of order (3,1,2) was selected since it had the
least AIC, BIC and least RMSE values. This results implied that the orders of the
regular ARIMA model were as follows,

p - 3 (AR model order)

d - 1 (differencing order)

q - 2 (MA model order)

4.2.4 Testing the model’s Adequacy

The residuals of the ARIMA (3,1,2) were tested using Box-Ljung.The resulting p —
value of 0.2561 > 5% significance level. Therefore, the null hypothesis that the resid-
uals had no autocorrelation was not rejected. This meant that residuals had zero auto-
correlation. The ACF and PACEF plots of these residuals were generated and presented

in Figure [4.9|repectively.
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Figure 4.9: ACF and PACF of ARIMA(3,1,2) Residuals

The ACF of the residuals did not indicate perfect non Autocorrelation. This was an
indication that more information could still be extracted from the data and be used
in model determination (Tay, 2017). Both the ACF and PACF plots indicated that
COVID-19 infections had weekly seasonality because of the significant spikes at lag
7, 14, 21 and 28. After further literature review, it was therefore suggested that data
should be seasonally differenced and fit a SARIMA model. Working on the ARIMA

model’s forecasts is in progress.

4.3 Fitting the SARIMA model

4.3.1 Seasonal Differencing

Due to weekly seasonality from the ACF in Figure[4.9] seasonal differencing was done
at lag 7. The Figure .10]demonstrates the time series plots generated by the seasonal

differenced data.
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Figure 4.10: Plots of COVID-19 cases after seasonal differencing

The data had a constant mean as shown in Figure 4.10(a) hence the trend component
had been removed from the COVID-19 data. The plot of the ACF also cut off which
meant that the data was stationary. The ACF had significant spikes at lags 7 and 14
indicating a possible seasonal MA of order 2 or 1. The PACF also had spikes at lags 7,
14, 21 and 28 suggesting a seasonal AR of order 1,2,3 or 4. Both the ACF and PACF
revealed non-seasonal MA and AR orders respectively, ranging from 0-6 each. This

was because of the significant spikes in both Figure b) and C).
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Histogram of Seasonally Differenced Log(Covid-19 Cases)
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Figure 4.11: Histogram of Seasonally Differenced COVID-19 data

The histogram Figure revealed that the offset log-transformed and differenced
COVID-19 cases were approximately normally distributed. However, after seasonal
differencing, data stationarity was confirmed using an ADF test. The resulting p —
value was 0.01, therefore the null hypothesis of data being non-stationary was rejected
at 5% level of significance. These results confirmed that the data was stationary after
seasonal differencing. There was therefore no need for further differencing. The data
had weekly seasonality hence a seasonal ARIMA was the best model to be fitted to the

data (T.-M. Choi et al.,2011).

4.3.2 Developing the SARIMA model

The possible model orders were first fitted to the data. The ACF and PACF plots of the
offset log-transformed and differenced data generated the SARIMA model’s orders.

Results shown in table 43|
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Table 4.3: Fitting the SARIMA Model

SARIMA Order AIC RMSE BIC
(1,0,D)(1,1,1); 2088.16 0.6486 2117.925
COVID-19 Cases (1,0,1)(1,1,2), 2088.33 0.6479 2118.051
(1,0,2)(1,1,1); 2089.02 0.6482 2118.744
(1,0,2)(0,1,2); 2094.70 0.6501 2124.423
(1,0,2)(2,1,1); 2087.02 0.6470 2121.698
(1,0,1)(2,1,2); 2082.50 0.6455 2117.176
(2,0,1)(1,1,2); 2089.36 0.6477 2124.043
(2,0,2)(1,1,1); 2092.04 0.6485 2126.716
(1,0,0)(1,1,1); 2411.93 0.7587 2431.749
(2,0,2)(1,1,2); 2085.52 0.6459 2131.751
(2,0,1)(1,1,1); 2089.24 0.6483 2118.963

Information Criterions AIC and BIC guided in deciding the best fit model. SARIMA(1,0,1)(2,1,2);

was selected as the best model.

4.3.3 Testing the model’s Adequacy

The residuals diagnostics of the model SARIMA(1,0,1)(2,1,2); were tested using ACF

plot, the histogram for normality and the Ljung Box test for autocorrelation (Pagan &

Hall, [1983)).
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Figure 4.12: ACF and Histogram of SARIMA(1,0,1)(2,1,2); Residuals
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The histogram Figured.12]indicated that the residuals resembled a normal distribution.
Although the ACF in Figure d.12fa) did not indicate perfect zero autocorrelation, the
autocorrelation Box-Ljung test proved that the residuals had zero autocorrelation.

The residuals were therefore independent of each other satisfying the assumption of
the error terms that they are identically and independently distributed (Schielzeth et
al., 2020). This was deduced from the resulting p — value of .3105 > 5% level of

significance.

4.4 Model Validation

Tanner et al., (2019) suggested the hold out technique in model validation. COVID-19
data set was split into two parts. The first part is the model fitting data set and the
second part was validation data set. This method was used because of the many data
points in the data and also because the data was time series data. In model fitting, 80%
of the data was used. The next step involved model validation using the remaining 20%
of the data. Out-of-sample prediction using test data was performed to validate the
selected model according to |Vrigazoval (2021). The models were used in forecasting
for 20% test data set. The MAE, MSE and the RMSE of the forecast errors of the

different selected models were observed and compared as follows;

Table 4.4: Model Validation

SARIMA Order MAE MSE RMSE
(1,0,1)(1,1,1); 3.0860 22.7889 4.7738
COVID-19 Cases (1,0,1)(1,1,2), 3.0063 21.3473 4.6203
(1,0,2)(1,1,1); 3.1204 23.4844 4.8461
(1,0,2)(0,1,2); 3.2609 26.8992 5.1864
(1,0,2)(2,1,1); 2.9882 21.0197 4.5847
(1,0,1)(2,1,2); 2.9867 20.9905 4.5815
(2,0,1)(1,1,2); 3.0323 21.7943 4.6684
(2,0,2)(1,1,1); 3.0891 22.8524 4.7804
(1,0,0)(1,1,1); 5.4582 134.4129  11.5937
(2,0,2)(1,1,2); 3.0025 21.2827 4.6133
(2,0,1)(1,1,1); 3.1140 23.3495 4.8321

46



From the Table 4.4} the model SARIMA(1,0,1)(2,1,2)7 had the least validation statis-
tics. This lead to the conclusion that it was the model of best fit. The RMSE of the
selected model was then normalized for confirmation of validation results due to the

seasonal component (Shcherbakov et al., 2013)).

Normalized RMSE = RMS E
Max actual value-Min actual value
Normalized RMSE = 45815
(3749 — 0)
= 0.0012 4.4.1)

SARIMA(1,0,1)(2,1,2)7 model could therefore be used for prediction because its nor-
malized RMSE was closer to 0 than 1. The NRMSE value ranges between 1 and O.
The model SARIMA(1,0,1)(2,1,2); forecasts for the test set are shown in the plot@.13]

Actual Against Forecasts of the Test Dataset

— predicted

. colour
£
‘ — actual

Daily Covid-19 Cases

7 a- 07
i & )
< - = Ry
Date

Figure 4.13: Plot of 20%() test data-set forecasts of daily COVID-19 cases using
SARIMA model against actual COVID-19 data
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SARIMA Model Parameters

Table 4.5: SARIMA Model coefficients, AIC and BIC values

AR SAR MA SMA AIC BIC
0.9868 -0.3833 -0.7527 -0.2711
0.2350 -0.5538 2082.5 2117.18

COVID-19 Cases

The model SARIMA(1,0,1)(2,1,2); is written as

(1 —0.9868B)(1 + 0.3833B" — 0.2350B")(1 — B") X, =
(4.4.2)

(1 —0.7527B)(1 — 0.2711B" — 0.5538 B" )e;

Therefore,

(1—0.7527B)(1 — 0.2711B7 — 0.5538 B7)e,

X, =
"7 (1-0.9868B)(1 + 0.3833B7 — 0.2350B7)(1 — B")

(4.4.3)

4.5 Forecasting

The model SARIMA(1,0,1)(2,1,2); was then used to forecast into the future for 90
days. Table d.6|are the forecasts of COVID-19 cases.

Table 4.6: Forecasts

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

1.5178199 0.67220395 | 2.363436 | 0.22456190 | 2.811078
0.3133367 -0.55133163 | 1.178005 | -1.00905940 | 1.635733
1.6022156 0.71929642 | 2.485135 | 0.25190722 | 2.952524
1.6915947 0.79116922 | 2.592020 | 0.31451278 | 3.068677
1.4407694 0.52353191 | 2.358007 | 0.03797573 | 2.843563

1.3534834 0.42008315 | 2.286884 | -0.07402911 | 2.780996

Continued on next page
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Table 4.6 — Continued from previous page

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
0.9084360 -0.04051827 | 1.857390 | -0.54286434 | 2.359736
1.7681195 0.70585337 | 2.830386 | 0.14352363 | 3.392715
0.4141473 -0.67342668 | 1.501721 | -1.24915356 | 2.077448
1.3052686 0.19348051 | 2.417057 | -0.39506457 | 3.005602
1.5374089 0.40241959 | 2.672398 | -0.19840748 | 3.273225
1.4986390 0.34139003 | 2.655888 | -0.27122055 | 3.268498
1.2994739 0.12084378 | 2.478104 | -0.50308531 | 3.102033
0.9171174 -0.28207205 | 2.116307 | -0.91688457 | 2.751119
1.7976871 0.50647359 | 3.088901 | -0.17705358 | 3.772428
0.4951323 -0.82440235 | 1.814667 | -1.52292179 | 2.513186
1.2039773 -0.14270197 | 2.550657 | -0.85559094 | 3.263546
1.5248207 0.15209117 | 2.897550 | -0.57458793 | 3.624229
1.2867636 -0.11099439 | 2.684522 | -0.85092276 | 3.424450
1.2437428 -0.17808706 | 2.665573 | -0.93075833 | 3.418244
1.1504934 -0.29451031 | 2.595497 | -1.05944909 | 3.360436
1.8653110 0.37060222 | 3.360020 | -0.42064879 | 4.151271
0.5232007 -0.99740778 | 2.043809 | -1.80236931 | 2.848771
1.1395974 -0.40594218 | 2.685137 | -1.22410143 | 3.503296
1.4926093 -0.07695006 | 3.062169 | -0.90782457 | 3.893043
1.3155331 -0.27718653 | 2.908253 | -1.12032139 | 3.751388
1.2382152 -0.37685275 | 2.853283 | -1.23181809 | 3.708249
1.1491089 -0.48753869 | 2.785756 | -1.35392758 | 3.652145
1.8756898 0.19492814 | 3.556451 | -0.69481333 | 4.446193
0.5479720 -1.15678246 | 2.252727 | -2.05922497 | 3.155169
1.1223279 -0.60558879 | 2.850245 | -1.52029263 | 3.764948

49

Continued on next page



Table 4.6 — Continued from previous page

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1.4962204 -0.25407119 | 3.246512 | -1.18061961 | 4.173060
1.2667413 -0.50517789 | 3.038660 | -1.44317524 | 3.976658
1.2298422 -0.56299393 | 3.022678 | -1.51206405 | 3.971748
1.2129321 -0.60014441 | 3.026009 | -1.55992912 | 3.985793
1.8974695 0.05000842 | 3.744931 | -0.92797839 | 4.722917
0.5592152 -1.30981290 | 2.428243 | -2.29921661 | 3.417647
1.1120306 -0.77786957 | 3.001931 | -1.77832227 | 4.002383
1.4930957 -0.41701364 | 3.403205 | -1.42816444 | 4.414356
1.2809217 -0.64876396 | 3.210607 | -1.67027785 | 4.232121
1.2337704 -0.71488665 | 3.182427 | -1.74644337 | 4.213984
1.2149736 -0.75207595 | 3.182023 | -1.79336906 | 4.223316
1.9040774 -0.09432764 | 3.902482 | -1.15221935 | 4.960374
0.5697954 -1.44830749 | 2.587898 | -2.51662665 | 3.656217
1.1128854 -0.92431387 | 3.150085 | -2.00274203 | 4.228513
1.4988449 -0.55687463 | 3.554564 | -1.64510681 | 4.642797
1.2728060 -0.80088142 | 3.346493 | -1.89862523 | 4.444237
1.2361372 -0.85498814 | 3.327263 | -1.96196303 | 4.434237
1.2354506 -0.87260375 | 3.343505 | -1.98854031 | 4.459441
1.9137927 -0.22192767 | 4.049513 | -1.35250973 | 5.180095
0.5766653 -1.57704803 | 2.730379 | -2.71715501 | 3.870486
1.1146989 -1.05648211 | 3.285880 | -2.20583589 | 4.435234
1.5075829 -0.80270558 | 3.817871 | -2.02569844 | 5.040864
1.2504921 -1.20100078 | 3.701985 | -2.49874273 | 4.999727
1.2525801 -1.21236129 | 3.717521 | -2.51722244 | 5.022383
1.9301055 -0.55703500 | 4.417246 | -1.87364763 | 5.733859
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Table 4.6 — Continued from previous page

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95

0.5935048 -1.90805044 | 3.095060 | -3.23229379 | 4.419303
1.1274817 -1.38810312 | 3.643066 | -2.71977326 | 4.974737
1.5166517 -1.01259021 | 4.045894 | -2.35149000 | 5.384793
1.2920446 -1.25049424 | 3.834583 | -2.59643297 | 5.180522
1.2548181 -1.30066904 | 3.810305 | -2.65346222 | 5.163098
1.2580287 -1.31006933 | 3.826127 | -2.66953833 | 5.185596
1.9347990 -0.65417598 | 4.523774 | -2.02469655 | 5.894295
0.5979528 -2.00456629 | 3.200472 | -3.38225670 | 4.578162
1.1316119 -1.48409666 | 3.747320 | -2.86876913 | 5.131993
1.5208141 -1.10774055 | 4.149369 | -2.49921331 | 5.540841
1.2965435 -1.34452469 | 3.937612 | -2.74262171 | 5.335709
1.2590288 -1.39423072 | 3.912288 | -2.79878149 | 5.316839
1.2620282 -1.40311062 | 3.927167 | -2.81394988 | 5.338006
1.9389090 -0.74601758 | 4.623836 | -2.16733185 | 6.045150
0.6021045 -2.09561413 | 3.299823 | -3.52370012 | 4.727909
1.1356031 -1.57457833 | 3.845784 | -3.00926170 | 5.280468
1.5248294 -1.19749560 | 4.247154 | -2.63860739 | 5.688266
1.3002582 -1.43390104 | 4.034417 | -2.88127750 | 5.481794
1.2628927 -1.48280073 | 4.008586 | -2.93628304 | 5.462068

The plot of COVID-19 cases and their forecasts given by Table from 15 May, 2023
to 29" July, 2023.
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Forecast of New COVID-19 Cases
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Figure 4.14: Plot of 90 days forecasts of daily COVID-19 cases using SARIMA model

The COVID-19 forecasts in Table 4.6 were plotted with the historical dataset as shown
in Figure d.14] The forecasts cases will continue decreasing but not to zero. The

forecasts revealed a donward trend in the number of COVID-19 cases.
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CHAPTER FIVE

SUMMARY, CONCLUSION AND

RECOMMENDATIONS

5.1 Introduction

The summary of this research and conclusions drawn based on the findings are men-
tioned in this chapter. The challenges met during the research process have also been

mentioned here and the recommendations have been made.

5.2 Summary

After the emergence of the COVID-19 pandemic on March 2020 , alot of research
has been done about its trend using time series analysis approach. The ARIMA and
SARIMA models however, had not been fitted to the long COVID-19 data set in Kenya.
This research therefore fitted ARIMA and SARIMA models to the long Kenyan daily
COVID-19 dataset.

Given that the data was not stable, an offset log transformation was used to stabilize
the variance. This is when a constant(offset) is first added to the data values before
finding their logarithm. The data also had a trend component which was removed
by first differencing. The possible ARIMA model orders were then determined from
ACF and PACEF plots of the log-differenced data. The models were fitted to the data

and ARIMA(3,1,2) was selected as the best with the least AIC and BIC values. The
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residuals of the selected ARIMA(3,1,2) revealed that the data contained a seasonal
component.

The seasonal component was removed by seasonal differencing. The possible SARIMA
model orders were determined from ACF and PACEF plots of the log-differenced data.
After fitting all the possible SARIMA model orders the model with the least AIC, BIC
and RMSE was picked to proceed to the next stage. The generation of parameter es-
timates was done using MLE approach and the models were then used to forecast for
the test data set.

The selected model SARIMA(1,0,1)(2,1,2); was taken through residual diagnostic
checking. The model’s accuracy was tested by using forecasts in the test data set to
obtain forecast errors, and the model with the lowest validation statistics(errors) was
selected. Further, the normalized RMSE was also used to validate the selected model
bacause there was weekly seasonality in the data.

The selected model was then used to forecast for 90 days into the future.

5.3 Conclusion

COVID-19 has been a pandemic for almost three years now therefore there was a great
desire to know if the pandemic would eventually end or not. ARIMA and SARIMA
models were fitted onto the data.

Due to variance instability, offset log-transformation was performed on COVID-19
training dataset for stability. The generated ACF and PACF plots then suggested that
the data was not stationary and it also had a weekly seasonality which is categorized as
weak seasonality. The data was therefore first differenced to achieve stationarity. ADF
test was done and it confirmed that the data was stationary after first differencing. The
ACF and PACEF plots of the log-differenced COVID-19 data were used to determine the
possible ARIMA model orders. ARIMA(3,1,2) emerged as the model with the least

AIC, BIC and RMSE values amongst all possible models that were fitted to the data.
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ACF and PACEF plots of the model’s residuals were then plotted. Both plots revealed
that the data indeed had a seasonal component. This suggested seasonal differencing
and a possibility of a SARIMA model.

Seasonal differecing was perfomed and the results demonstrated by Figure The
possible SARIMA model orders were then determined from ACF and PACF plots of
the log-differenced data. From the set of possible models, SARIMA (1,0,1)(2,1,2);
was the best model because it had the least AIC, BIC and RMSE values. The fitted
models parameters were estimated using the Maximum Likelihood Estimation method.
The model was then taken through the validation step. As the ACF of the residuals re-
vealed that they had zero autocorrelation, the Box-Ljung test confirmed that the residu-
als were white noise with a p — value of .01. According to the histogram of the residu-
als, the residuals followed a normal distribution. The forecast errors of the all the pos-
sible models were compared using MAE, MSE and RMSE. SARIMA(1,0,1)(2,1,2);
model had the least validation statistics as, MAE = 2.9867, MSE = 20.9905 and RMSE
=4.5815. The RMSE value was then normalized as part of model validation. The re-
sulting NRMSE= 0.0012 revealed that the model was a good fit to the data and there-
fore could be used for future prediction. According to the forecast errors obtained from
comparing the actual COVID-19 cases the models forecasts can be used and trusted.
The model was found to be accurate with only 4.58% error.

The model was then fitted to total COVID-19 cases data for forecasting. The results
indicated that the reported COVID-19 recorded cases would decrease as shown in Fig-
ure Although COVID-19 cases reduced, the cases did not drop to zero hence the
virus can no longer be termed as a pandemic but also cannot be ignored.

The findings of this study may be helpful to researchers, Kenyan government and the
stakeholders to examine the possible disease burden during the pandemic. The pan-
demic affected the country’s achievement of SDG’s and Big 4 agenda on the set time
frame. This model has proven to be adequate and sufficient. It can therefore be used

for forecasting as more data becomes available or in case of any other future pandemic
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diseases. Its applicability can be used to make predictions of cases. People are there-

fore advised to keep watch for such contagious diseases

5.4 Recommendations

This research recommends for more exploration in time series modelling of daily
COVID-19 cases as the data points increases. A comparative study on Bayesian SARIMA
and SARIMA model can be done in modelling daily COVID-19 in Kenya. Due to the
lifting and relaxation of restrictions by the Kenyan government in March 2022, one
can try and fit different models before and after the restrictions due to possible change
in probabilistic structures of the data. The data having been collected on a daily ba-
sis was found to have weekly seasonality. This was found in the ACF of ordinary
differenced data. Having weekly seasonality would also imply presence of monthly
seasonality. With the presence of two or more types of seasonality, one can fit the

BATS and TBATS models to the data.
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Appendix

R Code

library (lubridate)
library(timeSeries)
library (ggplot?2)
library (fBasics)
library (tseries)
library (forecast)
library (dplyr)
library (readxl)
library (stats)
library (R2jags)
library (rjags)
library (runjags)
library (coda)
library (mosaic)
library (fpp2)
library (urca)
library (fpp3)
library (ggfortify)
library (TSstudio)
library (MASS)
#library (tidyverse)
Covid_data <-

— read_excel ("D:/Project/data/CovidDatal .xlsx")

# Convert date variable to Date class
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Covid_data$Date <- as.Date(Covid_data$bhate, format =
< "SY-Sm-%d")

#Training set

mydata <- subset (Covid_data, Date<= "2023-01-31")
#test set

testdata <- subset (Covid_data, Date>="2023-02-01")

convert <—- ts(testdata$New_ cases)

# Converting the data to time series
Df <- ts(mydata$New_cases,start=c (2020, 3), frequency=365)
data_subset <- window (mydata$New_cases, start = "", end =

- ¢(2023,1))

ggplot (Covid_data, aes (x=Date) )+
geom_line (aes (y=New_cases),color="blue")+
labs (y="New_cases",x="Date")+ggtitle ("Covid-19

— Cases")+theme_classic()

$#Plot the histogram

Histogram <- hist (data_subset)

$#ACF and PACF plots

par (mfrow = c(1,2))

ACF <- acf (data_subset,xlab = "Lag", ylab = "ACF",

main = "COVID-19 cases")

PACF <- pacf (data_subset, xlab = "Lag", ylab = "Partial
-~ ACF",
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main = "COVID-19 cases")

$#Descriptives for new_cases
basicStats (data_subset)

shapiro.test (data_subset)

$# Conduct the augmented Dickey-Fuller test for
<~ stationarity

adf.test (data_subset, alternative=c ("explosive"),k=1)

constant <-1

testdataset <- log(convert+ constant)
testdataset

Logdata <- log(data_subset+constant)
$#test for normality

shapiro.test (Logdata)

acf (Logdata ,xlab = "Lag", ylab = "ACF",

main = "Log COVID-19 cases")

pacf (Logdata, xlab = "Lag", ylab = "Partial ACFEF",
main = "Log COVID-19 cases")

$# Plot a time series plot of the logtransformed data

ggtsdisplay (Logdata)

$#Plotting a histogram
hist (Logdata, x1ab="COVID-19 cases",main="Histogram of

<~ COVID-19 cases")

$#Testing for stationarity: Found stationary
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adf.test (Logdata)
$#First Differencing

DifferencedDatal <- diff (Logdata)

$# Plot a time series plot of the logdifferenced data

gtsdisplay (DifferencedDatal)

$# acf and pacf of ts data

acf (DifferencedDatal , xlab = "Lag", ylab = "ACF",
main = "Differenced COVID-19 cases")
pacf (DifferencedDatal, xlab = "Lag", ylab = "Partial
-~ ACE™",

main = "Differenced

<~ COVID-19 cases")

hist (DifferencedDatal, xlab "Differenced COVID-19

- cases",

main = "Histogram of
— Differenced COVID-19

-~ cases")

Modell <- arima (Logdata, order=c(1l,1,1))
summary (Modell)
BIC (Modell)

acf (resid (Modell), main=" Residuals")

Modell2 <- arima (Logdata, order=c(l,1,2))
summary (Model?2)

BIC (Model?2)
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acf (resid (Model2), main=" Residuals")

Model3 <- arima (Logdata, order=c(2,1,1))
summary (Model3)

BIC (Model3)

acf (resid (Model3), main=" Residuals")
Model4 <- arima (Logdata, order=c(2,1,2))
summary (Model4)

BIC (Model4d)

acf (resid (Modeld), main=" Residuals")

Model5 <- arima (Logdata, order=c(3,1,1))
summary (Modelb)
BIC (Modelb)

acf (resid (Model5), main=" Residuals")

Model6 <- arima (Logdata, order=c(3,1,2))
summary (Model6)
BIC (Modelb6)

acf (resid (Model6), main=" Residuals")

$#Seasonal Differencing

DifferencedData <- diff (Logdata, lag=7)

$# Plot a time series plot of the logdifferenced data

ggtsdisplay (DifferencedData)

$# acf and pacf of ts data
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acf (DifferencedData ,
main =
pacf (DifferencedData,

main =

hist (DifferencedData, xlab =

main

e

xlab

"Differenced COVID-19

xlab

"Differenced COVID-19

"Lag", ylab "ACE",

cases")

"Lag", ylab

cases")

"Differenced COVID-19

"Histogram of Differenced COVID-19 cases")

$$#Fitting the SARIMA models

ModelA <- arima (Logdata,

list (order=c(1,1,1),

—

summary (ModelA)
ModelB <- arima (Logdata,

list (order=c(1,1,2),

—

method="ML")

ModelD <- arima (Logdata,

list (order=c(0,1,2),

—

method="ML")

ModelE <- arima (Logdata,

list (order=c(2,1,1),

—

method="ML")

ModelF <- arima (Logdata,

list (order=c(2,1,2),

< method="ML")
ModelG <- arima (Logdata,
list (order=c(1,1,2),

—

method="ML")

—

14

order=c(1,0,1), seasonal

period=7),include.mean

method="ML")

order=c(1,0,1), seasonal

period=7),include.mean

order=c(1,0,2), seasonal

period=7),include.mean

order=c(1,0,2), seasonal

period=7), include.mean

order=c(1,0,1), seasonal

period=7),include.mean

order=c(2,0,1), seasonal

period=7), include.mean
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cases",

FALSE
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ModelH <- arima (Logdata, order=c(2,0,2), seasonal =

- list (order=c(1l,1,1), period=7),include.mean = FALSE,
— method="ML")

ModelI <- arima (Logdata, order=c(1,0,0), seasonal =

- list (order=c(1,1,1), period=7),include.mean = FALSE,
— method="ML")

ModelJ <- arima (Logdata, order=c(2,0,2), seasonal =

— list (order=c(1,1,2), period=7),include.mean = FALSE,

-~ method="ML")

#Fitting the selected model S-ARIMA(1,0,1)(2,1,2)7
Transformedcases <- log(Covid_data$New_cases +

-~ constant)

ModelFit <- arima (Transformedcases, order=c(l1,0,1),
<» seasonal = list (order=c(2,1,2),

-~ period=7),include.mean = FALSE, method="ML")
summary (ModelFit)

resid (ModelFit)

BIC (ModelFit)

acf (resid (ModelFit), main=" Residuals")

Box.test (resid (ModelFit), type="Ljung")

forecastsModelFit<-forecast (ModelFit, 90)
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